Due on Friday 5 June. No exercise session on Monday June 1 (holiday).

Problem 1 (Hilbert transform). Let *m* be a real valued Radon measure on the unit circle with $||m||_2 < \infty$ and $\widehat{m}(0) = 0$. We define its Hilbert transform through the identity

$$\widehat{Hm}(k) := -i\operatorname{sgn}(k)\widehat{m}(k)$$

where sgn(k) = 0 if k = 0 and sgn(k) = k/|k| otherwise.

(a) Show that $f(re^{2\pi i\theta}) = m_r(\theta) + i(Hm)_r(\theta)$ is analytic in the interior of the unit disk and that $(Hm)_r$ is real valued. Here m_r and $(Hm)_r$ are the respective Poisson extensions. Conclude that

$$\int_0^1 f(re^{2\pi i\theta})^k \, d\theta = 0$$

for all integers $k \geq 2$.

- (b) Let $k \ge 2$ be an even integer. Show that $||Hm||_{L^k} \le C_k ||m||_{L^k}$ for some C_k that does not depend on m when m is a smooth function. Hint: expand the real part of the above identity and use Hölder's inequality to separate L^k norms of m and Hm.
- (c) Let $2 \le p < \infty$. Show that $||Hm||_{L^p} \le C_k ||m||_{L^p}$ when m is a smooth function on the circle.
- (d) Let $\tilde{m}(x) = m(-x)$. Show that for all smooth functions m and n we have $\int (Hm)n = \int (H\tilde{n})\tilde{m}$. Use duality between L^p and $L^{p'}$, 1/p+1/p' = 1, and the fact that C^{∞} is dense in $L^{p'}$ to show that $||Hm||_{L^p} \leq C_k ||m||_{L^p}$, 1 .

Problem 2 (BMO and dyadic BMO). Given a martingale extension $F : \mathcal{D} \to \mathbb{C}$ of a Radon measure m on the unit interval, recall that m is in dyadic BMO if

$$\sup_{\mathcal{E}} \left(\frac{1}{|I_{\mathcal{E}}|} \sum_{I \in \mathcal{E}} |I| |\Delta F(I)|^2 \right)^{1/2} < \infty$$

when \mathcal{E} is a tree with top interval $I_{\mathcal{E}}$. It is in BMO if $\sum_{k \in \mathbb{Z}} \mathbb{1}_{[0,1)}(k + \cdot + \tau)m(k + \cdot + \tau)$ is in dyadic BMO for all $\tau \in [0,1)$.

(a) Let $I_0 \subset [0,1)$ be dyadic. Show that if $\mathcal{E} = \{I \in \mathcal{D} : I \subseteq I_0\}$, then

$$\lim_{k \to -\infty} \frac{1}{|I_0|} \sum_{I \in \mathcal{D}_k \cap \mathcal{E}} |I| |F(I) - F(I_0)|^2 = \frac{1}{|I_0|} \sum_{I \in \mathcal{E}} |I| |\Delta F(I)|^2.$$

(b) Show that a 1-periodic $f \in L^1([0,1))$ is in BMO if and only if

$$\sup_{I \subset \mathbb{R}} \frac{1}{|I|} \int_{I} \left| f - \frac{1}{|I|} \int_{I} f \right|^{2} < \infty$$

where the supremum is taken over *all* intervals.

(c) Use the formula above to show that there exists a locally integrable function which is of dyadic BMO but not of genuine BMO type (hint: the candidate more or less already appeared in the lectures).