Due on Friday 8 May 2020. Hand in in groups of two or three.

Problem 1. Let H be a complex Hilbert space.

- (a) Let $T: H \to H$ be a bounded linear operator. Prove that there exists an adjoint operator $T^*: H \to H$ so that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ with $||T^*||_{H \to H} = ||T||_{H \to H}$. (We identify the Hilbert space with its dual)
- (b) Show that ||Ux|| = ||x|| for all x if and only if $U^* = U^{-1}$. In this case U is said to be unitary. Show that the inverse of a unitary operator is unitary.
- (c) Let $\sigma(T) = \{\lambda \in \mathbb{C} | \exists x \in H \setminus \{0\} : Tx = \lambda x\}$. An operator T is self-adjoint if $T = T^*$. Show that if T is self-adjoint, then $\sigma(T) \subset \mathbb{R}$ and if T is unitary, then $\sigma(T) \subset \partial \mathbb{D}$ (unit circle).
- (d) The Caley transform C is defined as

$$CT = (T - i)(T + i)^{-1}$$

Show that it maps every bounded self-adjoint operator to a unitary operator.

(e) Let $A = \{f \in C(\mathbb{R}) : |\lim_{|t| \to \infty} f(t)| < \infty\}$. Conclude that for any self-adjoint T and $f, g \in A$ there exists bounded linear operators f(T) and g(T) such that $f(T) \circ g(T) = (fg)(T)$ and f(T) + g(T) = (f+g)(T).

Problem 2. Define adjacent systems of dyadic intervals by

$$\mathcal{D}^{\alpha} = \{2^{-k}([0,1) + m + (-1)^k \alpha/3), m, k \in \mathbb{Z}\},\$$

where $\alpha = 0, 1, 2$. Note that \mathcal{D}^0 is the usual system of dyadic intervals.

- (a) Show that each \mathcal{D}^{α} is nested in the sense that for $I, J \in \mathcal{D}^{\alpha}$ we have $I \cap J \in \{I, J, \emptyset\}$.
- (b) Show that for every interval $I = [a, b] \subset \mathbb{R}$ there exist $\alpha \in \{0, 1, 2\}$ and $J \in \mathcal{D}^{\alpha}$ such that $I \subset J$ and $|J| \leq 4|I|$.
- (c) Let $f \in L^1(\mathbb{R})$. The Hardy–Littlewood maximal functions are defined by

$$M_c f(x) := \sup_{t>0} \frac{1}{2t} \int_{x-t}^{x+t} |f(y)| \, dy, \quad M_{d,\alpha} f(x) := \sup_{I \ni \mathcal{D}^{\alpha}} \frac{1_I(x)}{|I|} \int_I |f(y)| \, dy$$

Fix α . Show that there is no absolute constant C > 0 such that $M_c f(x) < CM_{d,\alpha} f(x)$ would hold for all x and all $f \in L^1(\mathbb{R})$.

(d) Show that

$$M_c f(x) \le C_1 \sum_{\alpha=0}^{2} \quad M_{d,\alpha} f(x) \le C_2 M_c f(x)$$

where C_1 and C_2 are absolute constants.