
There are several treatments of weighted theory in book form: [GCF85] [Duo01] [CUMP11]
[LN15]. Our focus is on the basics. Some parts of these notes are stubs, in these cases references or
sufficiently common names of results are provided to make the full statements locatable.

1 Fefferman–Stein inequality

Definition 1.1 (Hardy–Littlewood maximal operator).

Theorem 1.2 (Marcinkiewicz interpolation).

Remark (Layer cake formula).

Definition 1.3 (Adjacent dyadic grids).

Theorem 1.4 ([FS71]).

sup
λ>0
λw{M f > λ}®

ˆ
| f |Mw.

2 The Ap condition

Definition 2.1. A dyadic grid D is a collections of measurable sets such that for all Q,Q′ ∈ D

Q ∩Q′ ∈ {;,Q,Q′}.

We fix a measure space (X ,µ) and a dyadic grid D.

Definition 2.2. The dyadic maximal operator is given by

M f (x) := sup
x∈Q∈D

(| f |)Q, where ( f )Q = |Q|
−1

ˆ
Q

f . (2.3)

In this lecture we consider the dependence of the constant in weighted weak and strong type
(p, p) estimates for the dyadic maximal operator on the weights for 1< p <∞. We begin with the
weak type estimates since in this case there is an explicit formula for arbitrary pairs of weights.

Definition 2.4. A weight is a non-negative measurable function.

In order to avoid measurability and summability issues we will assume throughout that the dyadic
grid D is finite. Since none of the estimates will depend on the cardinality of D one can then pass to
an infinite D using the monotone convergence theorem. For notational simplicity we also assume
that all functions are positive.

Theorem 2.5 ([Muc72]). Let 1< p <∞ and let v, w be weights. Then

‖M( f v)‖Lp,∞(w) ≤ [v, w](1/p
′,1/p)‖ f ‖Lp(v),

where
[v, w](1/p

′,1/p) = sup
Q∈D
(v)1/p

′

Q (w)1/pQ

is a two-weight characteristic. The above inequality is sharp in the sense that for a given pair v, w the
constant cannot be improved.

The above version of the square bracket notation for weight characteristics has been recently
introduced in [LN15] and is not universally adopted yet. I personally find it very convenient.
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Proof. In order to see that the constant is sharp consider f = 1Q. Then

M( f v)≥ (1Qv)Q = (v)Q on Q,

so
‖M( f v)‖Lp,∞(w) ≥ (v)Qw({M( f v)≥ (v)Q})1/p ≥ (v)Qw(Q)1/p = (v)1/p

′

Q (w)1/pQ ‖ f ‖Lp(v).

Taking a supremum over Q we see that the constant cannot be improved.
Now we prove the estimate. The set {M( f v)> λ} is the union of the family Q of the maximal

cubes Q ∈ D with ( f v)Q > λ. Notice that the members of Q are pairwise disjoint. Therefore

w{M( f v)> λ}=
∑

Q∈Q
w(Q)

<
∑

Q∈Q
w(Q)

�( f v)Q
λ
)p

≤ λ−p
∑

Q∈Q
w(Q)( f pv)Q(v)

p/p′

Q by Hölder

= λ−p
∑

Q∈Q
(w)Q(v)

p/p′

Q

ˆ
Q

f pv

≤ λ−p[v, w]p/p
′,1
∑

Q∈Q

ˆ
Q

f pv

≤ λ−p[v, w]p/p
′,1
ˆ

X
f pv.

It looks peculiar to estimate M( f v) and not just M( f ). However, in the range 1< p <∞ one can
pass between these two objects using the fact that ‖ f ‖Lp(v) = ‖ f v‖Lp(v1−p). Hence the above theorem
can be restated in the equivalent form

‖M( f )‖Lp,∞(w) ≤ [v, w](1/p
′,1/p)‖ f ‖Lp(v1−p).

When the weights on both sides coincide: w = v1−p (or equivalently v1/p′w1/p ≡ 1), this inequality
becomes

‖M( f )‖Lp,∞(w) ≤ [w]
1/p
Ap
‖ f ‖Lp(w), [w]Ap

= sup
Q∈D
(w)Q(w

−p′/p)p/p
′

Q .

The latter quantity is called the Ap characteristic of the weight w. Inequalities like this are called
one-weight estimates in order to emphasize that there is only one independent weight in contrast
to two-weight estimates in which the weights on the left-hand side and the right-hand side are
independent.

Remark (Nestedness of Ap classes). It is an immediate consequence of Jensen’s inequality that

1< p < r <∞ =⇒ [w]Ar
≤ [w]Ap

,

which is consistent with the fact that we can interpolate a weighted Lp estimate with the trivial
weighted L∞ estimate and obtain weighted Lr estimates.

We turn to strong type estimates. An important tool in this context is the uniform (in the
underlying measure µ) boundedness of the maximal function M on Lp(µ) (which we have proved in
the first lecture). In particular, we may use this with the measure µ replaced by vdµ, where v is a
weight. Notice however that the maaximal function itself also depends on the measure µ, and the
modified maximal function with respect to the measure vdµ has the form

Mv f (x) = sup
x∈Q∈D

( f )Q,v , where ( f )Q,v = v(Q)−1
ˆ

Q
f v =

( f v)Q
(v)Q

.
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For these maximal functions we have the estimate

‖Mv f ‖Lp(v) ®p ‖ f ‖Lp(v), 1< p <∞,

where the implicit constant does not depend on v.
There is no full characteriztion of two-weight strong type estimates for the maximal function.

Thee one-weight situation is substantially simpler, so we restrict ourselves to this setting.

Theorem 2.6 ([Buc93, Theorem 2.5]). Let 1 < p <∞ and let w, v be weights with v1/p′w1/p ≡ 1.
Then

‖M( f v)‖Lp(w) ® [w]
p′/p
Ap
‖ f ‖Lp(v).

Proof. We construct a stopping time S in the following way. Initialize

STOCK := D,

S := ;.

While STOCK is non-empty let

S := S ∪ {Q ∈ STOCK maximal},
STOCK := STOCK \ {Q′ ∈ STOCK : ∃Q ∈ S with Q′ ⊆Q and ( f v)Q′ ≤ 2( f v)Q)}.

This process terminates after finitely many steps because at each step we remove at least the maximal
elements from STOCK. For Q ∈ Q let chS (Q) be the set of maximal cubes Q′ ∈ S with Q′ ( Q,
called children of Q. Since the children Q′ have been chosen after Q, we have ( f v)Q′ > 2( f v)Q. It
follows that

∑

Q′∈chS (Q)

|Q′|=
∑

Q′∈chS (Q)

( f v)−1
Q′

ˆ
Q′

f v <
1

2

∑

Q′∈chS (Q)

( f v)−1
Q

ˆ
Q′

f v ≤
1

2
( f v)−1

Q

ˆ
Q

f v ≤
1

2
|Q|.

Therefore the sets E(Q) := Q \ ∪ chS (Q) satisfy |E(Q)| ≥ 1
2
|Q|, and they are pairwise disjoint.

Moreover, by construction
M( f v)≤ 2

∑

Q∈S
( f v)Q1E(Q).

Write

‖M( f v)‖Lp(w) ≤ 2
�

ˆ
�

∑

Q∈S
( f v)Q1E(Q)

�pdw
�1/p

= 2
�
∑

Q∈S
( f v)Q

ˆ
1E(Q)dw

�1/p

= 2
�
∑

Q∈S
( f )Q,v(v)Qw(E(Q))

�1/p

≤ 2
�
∑

Q∈S
( f )Q,v v(E(Q))

�1/p
sup

Q

�

v(E(Q))−1(v)Qw(E(Q))
�1/p.

By disjointness of Q’s and the maximal inequality for the martingale maximal function the first term
is bounded by

�

ˆ
Mv( f )dv

�1/p
® ‖ f ‖Lp(v).

In the second term we use the hypothesis on the weights v, w and Hölder’s inequality in the form

|Q| ≤ 2|E(Q)|=
ˆ

E(Q)
v1/p′w1/p ≤ v(E(Q))1/p

′
w(E(Q))1/p.
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Raising this inequality to power p′ we estimate the above supremum by

sup
Q

�

v(E(Q))−1(v)Qw(E(Q))
�1/p = sup

Q

�

|Q|−p′ |Q|p
′
v(E(Q))−1(v)Qw(E(Q))

�1/p

® sup
Q

�

|Q|−p′(v)Qw(E(Q))1+p′/p�1/p

= sup
Q

�

|Q|−p′(v)Qw(E(Q))p
′�1/p

≤ sup
Q

�

(v)Q(w)
p′

Q

�1/p

= [w]p
′/p

Ap
.

Theorems 2.5 and 2.6 can be extended to the Hardy–Littlewood maximal operator using adjacent
dydic grids. In this case the weight characteristics have to be modified to allow suprema over all
cubes Q ⊂ Rn.

2.1 Power weights

The basic examples of Ap weights on Rn are power weights.

Lemma 2.7. Let w : Rn→ (0,∞), w(x) = |x |α. Then

[w]Ap
∼n,p

(

(α+ n)−1(−αp′/p+ n)−p/p′ if − n< α < n(p− 1),
∞ otherwise.

In the above statement notice that p− 1= p/p′ for Hölder conjugate exponents.

Proof. The Ap characteristic is a supremum over all cubes Q ⊂ Rn. On the cubes such that dist(Q, 0)>
diam(Q) the function w is constant (up to a multiplicative factor), so their contribution is benign.

If dist(Q, 0) ≤ diam(Q), then Q ⊂ B = B(0, R), where R = 2diam(Q), and |B| ® |Q|. It follows
that

(w)Q(w
−p′/p)p/p

′

Q ® (w)B(w−p′/p)p/p
′

B .

A computation shows that the right-hand side does not depend on R, so the supremum over Q is finite
if and only if both w and w−p′/p are locally integrable, which is equivalent to the claimed condition
on α.

Example ([Buc93]). The following example shows that the dependence on the Ap characteristic in
Theorem 2.6 cannot be improved.

Fix 1 < p <∞ and consider the power weights w(x) = |x |(p−1)(1−δ) on R1 for small δ. Then
[w]Ap

∼ δ−p/p′ . Let f (x) = |x |−(1−δ)χ[0,1](x). Then f pw = |x |−(1−δ)χ[0,1] is integrable, so f ∈
Lp(w). Moreover, it is easy to see that M f ≥ δ−1 f , so

‖M f ‖Lp(w) ≥ δ−1‖ f ‖Lp(w) ¦ [w]
p′/p
Ap
‖ f ‖Lp(w).

3 Extrapolation

This section follows [Duo11].

Definition 3.1. The A1 characterisitc of a weight w is

[w]A1
:= sup

Mw

w
= sup

x∈Q∈D

(w)Q
w(x)

.
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Recall the identity p/p′ = p− 1 and the definition

[w]Ap
= sup

Q∈D
(w)Q(w

−p′/p)p/p
′

Q , 1< p <∞.

Lemma 3.2. If 1< p < p0 <∞ then for any weights w, u we have

[wup−p0]Ap0
≤ [w]Ap

[u]p0−p
A1

(3.3)

Proof. Let Q ∈ D. Using 1/u(x)≤ [u]A1
/(u)Q for x ∈Q we obtain

(wup−p0)Q ≤ [u]
p0−p
A1
(u)p−p0

Q (w)Q,

and by Hölder’s inequality with the exponent q = (p′/p)(p0/p
′
0) we have

((wup−p0)−p′0/p0)
p0/p

′
0

Q ≤ (w−p′/p)p/p
′

Q (u−(p−p0)(p′0/p0)·q′)
(p0/p

′
0)/q

′

Q

= (w−p′/p)p/p
′

Q (u)p0−p
Q .

Multiplying these inequalities and taking a supremum over Q we obtain the claim.

Lemma 3.4. If 1< p0 < p <∞ then for any weights w, u we have

[(wp0−1up−p0)1/(p−1)]Ap0
≤ [w](p0−1)/(p−1)

Ap
[u](p−p0)/(p−1)

A1
. (3.5)

Proof. Let Q ∈ D. Then similarly as above

(((wp0−1up−p0)1/(p−1))−p′0/p0)
p0/p

′
0

Q ≤ [u](p−p0)/(p−1)
A1

(u)−(p−p0)/(p−1)
Q (w−p′/p)

p0/p
′
0

Q

and by Hölder’s inequality with the exponent q = (p− 1)/(p0− 1) we have

((wp0−1up−p0)1/(p−1))Q ≤ (w)
(p0−1)/(p−1)
Q (u(p−p0)q′/(p−1))1/q

′

Q = (w)(p0−1)/(p−1)
Q (u)(p−p0)/(p−1)

Q .

Substituting these inequalities into the definition of the Ap0
characteristic and taking the supremum

over Q we obtain the claim.

Definition 3.6 (Rubio de Francia construction, [RdF84]). Let 1 < p ≤ ∞ and assume that M is
bounded on Lp(w). Then the operator

Rf :=
∞
∑

k=0

� M

2‖M‖Lp(w)

�k
f

has the following properties.

f ≤ Rf (3.7)

‖Rf ‖Lp(w) ≤ 2‖ f ‖Lp(w) (3.8)

[Rf ]A1
≤ 2‖M‖Lp(w). (3.9)

Theorem 3.10. Let f , g be nonnegative functions, 1< p0 <∞, and assume

�

ˆ
gp0 v

�1/p0 ≤ N([v]Ap0
)
�

ˆ
f p0 v

�1/p0

for some non-decreasing function N and all weights v ∈ Ap0
. Then for every 1< p <∞ and w ∈ Ap we

have
�

ˆ
gpw

�1/p ≤ K(w)
�

ˆ
f pw

�1/p,
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where

K(w) =

(

2N([w]Ap
(2‖M‖Lp(w))p0−p), p < p0,

2p′(1/p0−1/p)N([w](p0−1)/(p−1)
Ap

(2‖M‖Lp′ (w1−p′ ))
(p−p0)/(p−1)), p0 < p.

In particular, K(w)≤ CN(C[w]max(1,(p0−1)/(p−1))
Ap

) if M is the dyadic or the Hardy–Littlewood maximal
function.

Corollary 3.11. Let 1 < p0 <∞. If Tn are operators (not necessary linear) that are bounded on all
Lp0(w) with w ∈ Ap0

with constant depending only on the weight characteristic (but not on n), then

‖(
∑

n
|Tn fn|

p0)1/p0‖Lp(w) ≤ K([w]Ap
)‖(
∑

n
| fn|

p0)1/p0‖Lp(w), 1< p <∞.

Proof. Apply Theorem 3.10 with functions (
∑

n| fn|
p0)1/p0 and (

∑

n|Tn fn|
p0)1/p0 . Note that the hy-

pothesis of that Theorem is given by Fubini’s theorem.

Applying the corollary twice we obtain

Corollary 3.12. If Tn are operators (not necessary linear) that are bounded on all Lp0(w) with w ∈ Ap0

with constant depending only on the weight characteristic (but not on n), then

‖(
∑

n
|Tn fn|

q)1/q‖Lp(w) ≤ K([w]Ap
)‖(
∑

n
| fn|

q)1/q‖Lp(w), 1< p, q <∞.

Remark. Theorem 3.10 does not necessarily recover the best dependence on the weight characteristic.
Consider for instance the Hardy–Littlewood maximal function that is bounded on L2(w) with norm
® [w]A2

. Inserting this information into Theorem 3.10 yields that for p > 2 the maximal function
is bounded on L2(w) with norm ® [w]Ap

, which is worse than the conclusion of Theorem 2.6 in
that range. On the other hand, Theorem 4.4 can be recovered from the special case p = 2 using
Theorem 3.10.

Remark. Hölder’s inequality for strictly positive functions fi > 0 can be formulated as follows:
ˆ
∏

i

f ai
i ≤

∏

j

(
ˆ
∏

j

f
ai, j

i )
b j

if 0≤ b j ,
∑

j b j = 1, ai , ai, j ∈ R, and
∑

j ai, j b j = 1. This is convenient if we know some of the terms
one wants to obatain on the right-hand side and want to calculate the missing exponents.

Proof. Consider the case p < p0.
ˆ

gpw ≤
�

ˆ
gp0 w(Rf )p−p0

�p/p0
�

ˆ
w(Rf )p

�1−p/p0
by Hölder

≤ N([w(Rf )p−p0]Ap0
)p
�

ˆ
f p0 w(Rf )p−p0

�p/p0
�

ˆ
w(Rf )p

�1−p/p0
by hypothesis

≤ N([w]Ap
[Rf ]p0−p

A1
)p
ˆ

w(Rf )p by (3.3) and (3.7)

≤ 2pN([w]Ap
(2‖M‖Lp(w))

p0−p)p
ˆ

f pw by (3.9) and (3.8).

In the case p > p0 let H = wgp−1 so that ‖H‖p′

Lp′ (w1/(1−p))
= ‖g‖p

Lp(w) and write

ˆ
gpw =

ˆ
gp0 w(p0−1)/(p−1)H(p−p0)/(p−1)
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≤
ˆ

gp0 w(p0−1)/(p−1)(RH)(p−p0)/(p−1) by (3.7)

≤ N([w(p0−1)/(p−1)(RH)(p−p0)/(p−1)]Ap0
)p0

ˆ
f p0 w(p0−1)/(p−1)(RH)(p−p0)/(p−1) by hypothesis

≤ N([w]
(p0−1)
(p−1)

Ap
[RH]

(p−p0)
(p−1)

A1
)p0

�

ˆ
f pw

�p0/p�
ˆ

w1/(1−p)(RH)p/(p−1)
�1−p0/p

by (3.5) and Hölder

≤ 2p′(1−p0/p)N([w]
(p0−1)
(p−1)

Ap
(2‖M‖Lp′ (w1/(1−p)))

(p−p0)
(p−1) )p0

�

ˆ
f pw

�p0/p�
ˆ

w1/(1−p)H p′
�1−p0/p

by (3.9) and (3.8).

By construction the last bracket equals the left-hand side, and the claim follows.

4 Sparse operators

So far we only had one example of an operator that is bounded on Ap weighted spaces, namely the
maximal operator. Now we introduce the second basic example.

Definition 4.1. Let D be a dyadic grid and 0< η≤ 1. A collection of cubes S ⊂ D is called η-sparse
if there exist pairwise disjoint subsets E(Q)⊂Q such that |E(Q)| ≥ η|Q|.

Usually we will not specify the parameter η and just talk about “sparse collections”. In this case
we assume a universal lower bound on η.

In the previous lecture we have seen one example of a sparse collection that was constructed
using a stopping time.

Definition 4.2. The sparse operator associated to a sparse collection S is given by

AS f :=
∑

Q∈S
( f )Q1Q.

This operator is strictly larger than the operator that we have encountered in the estimate for the
maximal operator. The difference is that we have replaced 1E(Q) by E(Q), so that the individual terms
are no longer disjointly supported.

Over the last few years people have found out that sparse operators control many different
interesting oeprators, beginning with Calderón–Zygmund operators.

Exercise 4.3. Identify the sparse collection in the proof of [JN61, Lemma 1].

For the time being we concentrate on weighted estimates for sparse operators.

Theorem 4.4. For 1< p <∞ and an η-sparse collection S we have

‖AS f ‖Lp(w) ®p,η [w]
max(1,1/(p−1))
Ap

‖ f ‖Lp(w).

The implicit constant does not depend on the collection S or the weight w.

The proof below is from [Moe12].

Proof. With the dual weight v = w1/(1−p) = w−p′/p and by duality it suffices to show
ˆ

AS ( f v)gw ®p η
−1[w]max(1,1/(p−1))

Ap
‖ f ‖Lp(v)‖g‖Lp′ (w)

(all functions positive). To this end write the left-hand side as
∑

Q∈S
( f v)Q(gw)Q|Q|=

∑

Q∈S
( f )Q,v v(E(Q))1/p(g)Q,ww(E(Q))1/p

′
|Q|(v)Q(w)Qv(E(Q))−1/pw(E(Q))−1/p′ .

7



By Hölder’s inequality for sums this is bounded by

�
∑

Q∈S
( f )pQ,v v(E(Q))

�1/p� ∑

Q∈S
(g)p

′

Q,ww(E(Q))
�1/p′

sup
Q
|Q|(v)Q(w)Qv(E(Q))−1/pw(E(Q))−1/p′ .

The first thow terms are bounded by ‖Mv f ‖Lp(v) and ‖Mw g‖Lp′ (w), respectively, and we can use the
martingale maximal inequality in both. It remains to estimate the supremum over Q. Fix Q. Recall

|Q| ≤ η−1|E(Q)| ≤ η−1v(E(Q))1/p
′
w(E(Q))1/p.

There are now two cases, p ≤ p′ and p ≥ p′ (equivalently, p ≤ 2 and p ≥ 2). In the former case take
the last inequality to the power p′/p and obtain the estimate

η−p′/p|Q|1−p′/p(v)Q(w)Qw(E(Q))p
′/p2−1/p′ ® |Q|1−p′/p(v)Q(w)Qw(Q)p

′/p2−1/p′ = (v)Q(w)
p′/p
Q ≤ [w]p

′/p
Ap

.

The case p ≥ 2 is analogous with roles of v and w interchanged.

Time permitting: show that S is η-sparse iff 1S is 1/η-Carleson (reference [LN15, Lemma 6.3],
easier [ZK16]).

5 Calderón–Zygmund (CZ) theory

In this lecture we cover some standard material which can be found e.g. in [Gra14] or [Ste93].

Definition 5.1. A modulus of continuity is a function ω : [0,∞)→ [0,∞) that is subadditive in the
sense u≤ s+ t =⇒ ω(u)≤ω(s) +ω(t). The Dini norm of a modulus of continuity is

‖ω‖Dini =
ˆ 1

0
ω(t)

dt

t
.

Notice that a Dini modulus of continuity is monotonically increasing, and it follows that ‖ω‖Dini ∼
∑

k∈Nω(2
−k).

Definition 5.2. Let ω be a modulus of continuity. An ω-CZ kernel is a function K : Rn×Rn \ {(x , x) :
x ∈ Rn} → C such that

1. |K(x , y)| ≤ CK |x − y|−d for some CK <∞ and all x , y ∈ Rn with x 6= y ,

2. |K(x , y)− K(x , y ′)|+ |K(y, x)− K(y ′, x)| ≤ω(|y − y ′|/|y − x |)|x − y|−d for all x , y, y ′ ∈ Rn

with |y − y ′|< |y − x |/2.

An ω-CZ operator is a linear operator, initially defined on bounded compactly supported measurable
functions on Rn with values in L1(Rn) + L∞(Rn) that has an associated ω-CZ kernel K such that for
all functions f and points x 6∈ supp( f ) we have

T f (x) =
ˆ

K(x , y) f (y)dy.

Remark. The use of the constant CK is traditional; it can be replaced by a qualitative off-diagonal
decay. Our quantitative estimates will depend on ‖ω‖Dini, and since one can show CK ® ‖ω‖Dini the
constant CK will not appear in the estimates.
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5.1 CZ decomposition

Theorem 5.3 (CZ decomposition). Let f ∈ L1(Rn) and λ > 0. Then there exists a decomposition
f = g +

∑

Q∈Q bQ, where

1. ‖g‖1 ≤ ‖ f ‖1,

2. ‖g‖∞ ≤ 2nλ,

3. Q is a collection of pairwise disjoint dyadic cubes,

4.
∑

Q∈Q |Q| ≤ λ
−1‖ f ‖1,

5. ‖bQ‖1 ≤ 2n+1λ|Q| for every Q ∈Q,

6.
´

bQ = 0 for every Q ∈Q.

Sketch of proof. Let Q be the collection of maximal dyadic cubes with (| f |)Q > λ. Let bQ = 1Q( f −ffl
Q f ). Then

g(x) =

(ffl
Q f , x ∈Q ∈Q,

f (x) otherwise.

It follows that ‖g‖∞ ® λ (proved using the fact that | f | ≤ M f pointwise a.e. that is obtained by a
density argument/Lebesgue differentiation theorem), and ‖g‖1 ≤ ‖ f ‖1.

Lemma 5.4. Let T be an ω-CZ operator. Then

‖T‖L1→L1,∞ ®d ‖T‖L2→L2 + ‖ω‖Dini.

Proof. The claim is non-void only if T is bounded on L2. Multiplying T and its kernel by a scalar we
may normalize ‖T‖L2→L2 = 1. By homogeneity if suffices to show

|{T f > 1}|® (1+ ‖ω‖Dini)‖ f ‖1

for bounded compactly supported functions f . Consider the CZ decomposition

f = g +
∑

Q∈Q
bQ

at level 1. This expansion in fact converges (unconditionally) in L2 by the qualitative assumptions on
f , so T f = T g +

∑

Q∈Q T bQ with unconditional convergence in L2.
Using the mean zero property of the bad functions bQ we obtain

‖T bQ‖L1((10Q)c) ≤
∑

k≥0

ˆ
2k rQ≤|x−xQ|<2k+1rQ

�

�

ˆ
Q

K(x , y)bQ(y)dy
�

�dx

≤
∑

k≥0

ˆ
2k rQ≤|x−xQ|<2k+1rQ

ˆ
Q
|K(x , y)− K(x , xQ)||bQ(y)|dydx

≤
∑

k≥0

ˆ
2k rQ≤|x−xQ|<2k+1rQ

ˆ
Q
|K(x , y)− K(x , xQ)||bQ(y)|dydx

®
∑

k≥0

ω(2−k)
ˆ

Q
|bQ|

® ‖ω‖Dini|Q|.

9



Hence with Ω = ∪Q∈Q10Q we have

‖
∑

Q

T bQ‖L1(Rd\Ω) ® ‖ω‖Dini

∑

Q∈Q
|Q|® ‖ω‖Dini‖ f ‖1

Therefore

|{T f > 1}| ≤ |Ω|+ |{
∑

Q

T bQ > 1/2} ∩Ωc|+ |{T g > 1/2}|

® ‖ f ‖1+ ‖
∑

Q

T bQ‖L1(Rd\Ω)+ ‖T g‖22

® (1+ ‖ω‖Dini)‖ f ‖1,

where we have used ‖g‖22 ≤ ‖g‖1‖g‖∞ ® ‖ f ‖1.

5.2 Cotlar’s inequality

Define the maximally truncated operator

T] f (x) := sup
ε>0,|x−x ′|≤ε/2

ˆ
B(x ′,ε)c

K(x ′, y) f (y)dy.

This maximal truncation is usually considered without the supremum in x ′ (i.e. with x ′ = x), but the
above version is more convenient for us.

Lemma 5.5 (Cotlar’s inequality).

T] f ®d,δ (‖T‖L2→L2 + ‖ω‖Dini)M f +MδT f . (5.6)

Here Mδ f = (M( f δ))1/δ, 0< δ < 1, where M is the usual Hardy–Littlewood maximal function.

In particular T] has weak type (1, 1).

Proof. For x ′, x ′′ ∈ B(x ,ε/2) writeˆ
B(x ′,ε)c

K(x ′, y) f (y)dy =
ˆ

B(x ′,ε)c\B(x ,2ε)c
K(x ′, y) f (y)dy +

ˆ
K(x ′′, y)( f 1B(x ,2ε)c )(y)dy

−
ˆ
(K(x ′′, y)− K(x ′, y))1B(x ,2ε)c f (y)dy.

The first term is estimated using the kernel bound by CK M f (x). The last term is estimated by
∑

k>0

ˆ
2kε≤|x−y|<2k+1ε

|K(x ′′, y)−K(x ′, y)|| f (y)|dy ®d

∑

k>0

ˆ
2kε≤|x−y|<2k+1ε

ω(2−k)

(2kε)d
| f (y)|dy ® ‖ω‖DiniM f (x).

The middle term equals

T ( f 1B(x ,2ε)c )(x
′′) = T ( f )(x ′′)− T ( f 1B(x ,2ε))(x

′′),

where we have used that T is associated to K and linearity of T . In both terms we take the Lδ average
over x ′′ ∈ B := B(x ,ε/2). The contribution of the former term is then clearly bounded by MδT f (x).
The contribution of the latter term is bounded by

(
 

B
|T (14B f )|δ)1/δ ® |B|−1‖T (14B f )‖L1,∞(B) ≤ ‖T‖L1→L1,∞ |B|−1‖14B f ‖L1 ® ‖T‖L1→L1,∞M f (x),

and we conclude using Lemma 5.4.

Exercise 5.7. Replace MδT f in (5.6) byM1/2T f , where

Mλ f (x) = sup
x∈Q
( f 1Q)

∗(λ|Q|)

and f ∗ denotes the non-increasing rearrangement of f .
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5.3 Marcinkiewicz interpolation theorem, Lp,∞ version

We need the following version of the Marcinkiewicz interpolation theorem in which the conclusion is
a bound on a weak Lp space.

Theorem 5.8. Let T be a quasisubadditive operator and assume T : Lp j → Lp j ,∞ for j = 0,1 with
1≤ p0 < p1 ≤∞. Let 0< θ < 1 and 1/pθ = (1− θ)/p0+ θ/p1. Then T : Lpθ ,∞→ Lpθ ,∞.

Proof. Similarly as in the proof of the strong type estimate split f = f0,λ+ f1,λ with f1,λ = f 1| f |≤λ.
Then

{|T f |> η} ≤ {|T f0,λ|> η/(2C)}+ {|T f1,λ|> η/(2C)}
® η−p0‖T f0,λ‖

p0
p0,∞+η

−p1‖T f1,λ‖
p1
p1,∞

® η−p0‖ f0,λ‖
p0
p0
+η−p1‖ f1,λ‖

p1
p1

≤ η−p0

ˆ
| f |>λ
| f |p0 +η−p1

ˆ
| f |≤λ
| f |p1

≤ η−p0

∑

k≥0

ˆ
| f |∼2kλ

| f |p0 +η−p1

∑

k≤0

ˆ
| f |∼2kλ

| f |p1

≤ η−p0

∑

k≥0

(2kλ)p0−pθ ‖ f ‖pθ ,∞+η
−p1

∑

k≤0

(2kλ)p1−pθ ‖ f ‖pθ ,∞.

Since p0 < pθ < p1, both series are geometric and dominated by the k = 0 terms. Hence

{|T f |> η}® η−p0(λ)p0−pθ ‖ f ‖pθ ,∞+η
−p1(λ)p1−pθ ‖ f ‖pθ ,∞.

Choosing λ= η we obtain the claim

{|T f |> η}® η−pθ ‖ f ‖pθ ,∞.

Corollary 5.9. The maximal operator Mδ is bounded on L1,∞ for 0< δ < 1.

Proof. By Theorem 5.8 the Hardy-Littlewood maximal operator M is bounded on L1/δ,∞. Hence

‖Mδ f ‖1,∞ = ‖M( f δ)‖1/δ,∞ ® ‖ f δ‖1/δ,∞ = ‖ f ‖1,∞.

6 Sparse domination of CZ operators

The fierst proof of sharp weighted estimates for CZ operators was quite complicated [Hyt12]. Many
simplifications have been made since then The two key simplifications were the introduction of sparse
domination by Lerner [Ler13] and a simple algorithm for constructing sparse collections by Lacey
[Lac15], a streamlined version of which appears in [HRT15]. We have followed [Ler16].

The main example that I am aware of where sharp weighted estimates are useful is the regularity
theory for solutions of the Beltrami equation in [AIS01].

7 A∞ weights

Let D be a dyadic grid (in Rd) and M the associated dyadic maximal operator. The associated A∞
characteristic is defined by

[w]A∞ := sup
Q∈D

w(Q)−1
ˆ

Q
M(w1Q).

11



Lemma 7.1. For every weight w and 1< p <∞ we have

[w]A∞ ®p [w]Ap
.

Proof. Let v be the dual weight given by w1/pv1/p′ ≡ 1. Fix Q0 ∈ D and construct the (minimal)
stopping collection S by the rules

1. Q0 ∈ S ,

2. If Q ∈ S , then the maximal cubes Q′ ⊂Q with (w)Q′ ≥ 2(w)Q are in S .

Then the collection S is sparse. The pairwise disjoint major subsets E(Q)⊂Q ∈ S satisfy

|Q| ∼ |E(Q)|=
ˆ

E(Q)
1=

ˆ
E(Q)

w1/pv1/p′ ≤ w(E(Q))1/pv(E(Q))1/p
′

(7.2)

by Hölder’s inequality.
Now ˆ

Q0

M(w1Q0
)®

ˆ
Q0

∑

Q∈S
1E(Q)(w)Q

=
∑

Q∈S
|E(Q)|(w)Q

=
∑

Q∈S
w(E(Q))

|E(Q)|(w)Q
w(E(Q))

≤ sup
Q∈S

|E(Q)|(w)Q
w(E(Q))

∑

Q∈S
w(E(Q))

≤ sup
Q∈S

|E(Q)|(w)Q
w(E(Q))

w(Q).

Hence it suffices to show
|E(Q)|(w)Q

w(E(Q))
® [w]Ap

uniformly in Q. To this end multiply the left-hand side by (7.2) taken to the power p:

|E(Q)|(w)Q
w(E(Q))

®
|E(Q)|(w)Q

w(E(Q))
�w(E(Q))1/pv(E(Q))1/p

′

|E(Q)|
�p

≤ |E(Q)|1−p(w)Qv(E(Q))p/p
′

® |Q|1−p(w)Qv(Q)p/p
′

= (w)Q(v)
p/p′

Q

≤ [w]Ap
.

Lemma 7.3. Let w be a weight, λ > 0, and Q ∈ D maximal with (w)Q > λ. Then Mw = M(w1Q) on
Q. Moreover, ˆ

Q
Mw ≤ 2d[w]A∞ |Q|λ

and
w(Q)≤ 2d |Q|λ.
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Proof. The first conclusion is clear because cubes that strictly contain Q have a smaller contribution
to the maximal function than Q. For the second conclusion let Q̂ be the dyadic parent of Q, then

ˆ
Q

Mw =
ˆ

Q
M(w1Q)≤ [w]A∞

ˆ
Q

w ≤ [w]A∞

ˆ
Q̂

w ≤ [w]A∞ |Q̂|(w)Q̂ ≤ 2d[w]A∞ |Q|λ.

The third conclusion is even easier:

w(Q)≤ w(Q̂) = (w)Q̂|Q̂| ≤ 2dλ|Q|.

Lemma 7.4 ([HPR12, Lemmas 2.2 and 2.3]). Let w ∈ A∞ and ε = 1
2d+1[w]A∞−1

. Then for every Q0 ∈ D
we have  

Q0

M(w1Q0
)1+ε ≤ 2(w)εQ

 
Q0

M(w1Q0
)≤ 2[w]A∞(w)

1+ε
Q , (7.5)

 
Q0

M(w1Q0
)εw ≤ 2(w)1+εQ . (7.6)

Proof. For notational convenience suppose w = w1Q0
and Q0 is the unique maximal element of D.

The layer cake formula for the reference measure that will be useful for both conclusions:
ˆ

Q0

(Mw)1+ε = (1+ ε)
ˆ

Q0

ˆ Mw

0
λεdλ= (1+ ε)

ˆ ∞
0
λε|{Mw > λ}|dλ. (7.7)

By the layer cake formula with a measure v (we will later use v = w or v = Mw) we have
ˆ

Q0

M(w1Q0
)εv = ε

ˆ
Q0

(
ˆ Mw

0
λε−1dλ)v = ε

ˆ ∞
0
λε−1v{Mw > λ}dλ.

We split this integral at λ= (w)Q0
. The part with λ≤ (w)Q0

we estimate by

ε

ˆ (w)Q0

0
λε−1v{Mw > λ}dλ= ε

ˆ (w)Q0

0
λε−1v(Q0)dλ= (w)

ε
Q0

v(Q0).

For λ > (w)Q0
the superlevel set {Mw > λ} is the union of the collectionQλ of maximal dyadic cubes

Q ⊂Q0 with
(w)Q > λ.

Consider first the case v = Mw that corresponds to (7.5). It follows from Lemma 7.3 that

Mw{Mw > λ} ≤ 2d[w]A∞ |{Mw > λ}|λ,

so using (7.7) we obtain

ε

ˆ ∞
(w)Q

λε−1Mw{Mw > λ}dλ≤ 2d[w]A∞ε
ˆ ∞
(w)Q0

λε|{Mw > λ}|dλ

≤
2d[w]A∞ε

1+ ε

ˆ
Q0

(Mw)1+ε.

Notice that the fraction on the right-hand side equals 1/2 by the hypothesis. Substituting this above
we obtain ˆ

Q0

M(w1Q0
)1+ε ≤ (w)εQ0

Mw(Q0) +
1

2

ˆ
Q0

(Mw)1+ε,

and the conclusion (7.5) follows.
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Consider now the case v = w that corresponds to (7.6). By Lemma 7.3 we obtain

w{Mw > λ} ≤ 2dλ|{Mw > λ}|.

Hence using (7.7) and (7.5) we obtain

ε

ˆ ∞
(w)Q0

λε−1w{Mw > λ}dλ≤ 2dε

ˆ ∞
(w)Q0

λε|{Mw > λ}|dλ≤
2dε

1+ ε

ˆ
Q0

(Mw)1+ε

≤
2d+1[w]A∞ε

1+ ε
|Q0|(w)1+εQ0

= |Q0|(w)1+εQ0

by the choice of ε. The conclusion follows.

Corollary 7.8 (Open property). Let 1 < p < ∞ and w ∈ Ap. Then [w]Ap̃
® [w]Ap

, where p̃ =

p− p−1
2d+1[v]A∞

< p and v is the dual weight: w1/pv1/p′ ≡ 1.

Proof. The exponent p̃ is chosen in such a way that 1+ ε = (p/p′)(p̃′/p̃), where ε is as in Lemma 7.4
for the weight v. Consider the dual weight ṽ = w−p̃′/p̃. Then by (7.6) applied to the weight v we
have

(ṽ)Q = (v
1+ε)Q ≤ 2(v)1+εQ .

Hence for every Q ∈ D we have

(w)Q(ṽ)
p̃/p̃′

Q ® (w)Q(v)
(1+ε)p̃/p̃′

Q = (w)Q(v)
p/p′

Q ≤ [w]Ap
.

7.1 Embedding of A∞ into Ap

We call a weight (Cd b-)doubling if
w(2Q)≤ Cd bw(Q)

for some doubling constant Cd b <∞ and all cubes Q ⊂ Rd .
It is not hard to show that Ap weights are doubling if p <∞. The case p =∞ is more subtle.

Exercise 7.9. Find a weight that is A∞ with respect to the standard dyadic filtration but not A∞(Rd).

Exercise 7.10. Find a weight on R that is A∞ with respect to the three 1/3-shifted dyadic grids but
not A∞(R).

To combat these difficulties we define the A∞(Rd) by

[w]A∞(Rd ) = sup
Q

w(Q)−1
ˆ

Q
M(w1Q),

where the supremum is taken over all non-empty axis-parallel cubes in Rd .

Lemma 7.11. For every d ≥ 1 there exists C = C(d) such that for every w ∈ A∞(Rd) we have

Cd b(w)≤ CC
[w]

A∞(Rd )
.

The converse is not true: there exist doubling weights that are not A∞, see [FM74] (a different
version of the A∞ condition was used there).
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Proof. Let k > C[w]A∞(Rd ) be an integer, where C is a large constant to be chosen later. We first show
that

w(Q̃)® w(Q),

where Q is a cube and Q̃ = (1+ 2−k)Q. The claim then follows by iterating this estimate log2 k times.
By scaling invariance we may assume that Q has side length 1. Also, it suffices to estimate w(P),

where P is a parallelepiped of dimensions 1× · · · × 1× 2−k at the boundary of Q̃ since Q̃ is the union
of finitely many such parallelepipeds and the cube Q.

Consider now the strip Sl ⊂ Q of width 2−l at distance 2−l from P. Estimating the maximal
function on this strip by the averages of scale 2−l we obtain

ˆ
Sl

M(w1Q̃)≥
ˆ

Sl

M(w1P)¦
ˆ

w1P .

Since there are ∼ k pairwise disjoint strips Sl , it follows that
ˆ

Q̃
M(w1Q̃)¦ k

ˆ
P

w.

Summing up these estimates for finitely many P ’s we obtain
ˆ

Q̃
M(w1Q̃)¦ k

ˆ
Q̃\Q

w.

Using the definition of the A∞ characteristic it follows that

k
ˆ

Q̃\Q
w ® [w]A∞w(Q̃).

If k was chosen sufficiently large in terms of [w]A∞ this implies w(Q̃ \Q)≤ w(Q̃)/2 and consequently
w(Q̃)≤ 2w(Q).

At this point we return to dyadic weights and assume henceforth the doubling condition

w(Q̂)≤ Cd bw(Q),

where Q̂ is the dyadic parent of a cube Q.
Recall that A∞ weights satisfy the reverse Hölder inequality

(w1+ε)Q ≤ 2(w)1+εQ , 1/ε ∼ [w]A∞ .

Theorem 7.12. Let w > 0 be a dyadic weight that satisfies the doubling condition with some Cd b <∞
and the reverse Hölder inequality with some ε > 0. Then w ∈ Ar provided r ≥ C41/ε log(2Cd b).

In the case of A∞ weights this holds in particular if r ≥ C[w]A∞(Rd ) . This quantitative dependence
has been noted in [HP14, Theorem 1.3] with the remark that it has been implicitly known before (i.e.
it follows from previous results and/or their proofs). We follow the proof in [Ste93, p. V.5.1].

Proof. LetM = MD,w be the dyadic maximal function with respect to the weight w. Fix Q0 ∈ D and
let f = w−11Q0

. We want to estimate (w)Q0
(w1−r ′)1−r

Q0
. We may normalize |Q0|= 1 by scaling and

w(Q0) = 0 by multiplying w by an absolute constant.
Let N > 1 be chosen later and write Qk, k ∈ N, for the collection of maximal cubes Q such that

N k ≤ w(Q)−1
ˆ

Q
f w.
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Notice that for Q ∈Qk we have

w(Q)−1
ˆ

Q
f w ≤ w(Q)−1

ˆ
Q̂

f w = w(Q)−1w(Q̂)w(Q̂)−1
ˆ

Q̂
f w ≤ Cd bN k.

Let k > 0 and Q ∈Qk−1. Then

∑

Q′∈Qk:Q′⊂Q

w(Q′)≤ N−k
∑

Q′∈Qk:Q′⊂Q

ˆ
Q′

f w ≤ N−k
ˆ

Q
f w ≤ N−kCd bN k−1w(Q) = N−1Cd bw(Q).

Choose N = 2Cd b and let Ek = ∪Qk. Then w(Ek ∩Q)≤ w(Q)/2.
By the Hölder and the reverse Hölder inequality for every set E ⊂ Q with w(E) ≤ w(Q)/2 we

have

(w)Q/2≤ (w1Q\E)Q ≤ (w1+ε)1/(1+ε)Q (1Q\E)
ε/(1+ε) ≤ 21/(1+ε)(w)Q(1− |E|/|Q|)ε/(1+ε),

so that
2−2−ε ≤ (1− |E|/|Q|)ε,

so
|E|/|Q| ≤ 1− 2−2/ε−1.

Summing over Q ∈Qk−1 we obtain

|Ek|/|Ek−1| ≤ 1− 2−2/ε−1.

Hence
ˆ

Q0

w1−r ′ ≤
ˆ

Q0

(M f )r
′−1 ≤

∞
∑

k=0

N (k+1)(r ′−1)|Ek \ Ek+1| ≤ N r ′−1
∞
∑

k=0

N (r
′−1)k(1− 2−2/ε−1)k <∞

provided N r ′−1(1− 2−2/ε−1)< 1, which follows from

(r ′− 1) log N ® 4−1/ε,

or in other words

r − 1=
1

r ′− 1
¦ 41/ε log N .

Corollary 7.13. A∞(Rd) = ∪p<∞Ap(Rd).

8 Mixed Ap–A∞ estimates

In Lecture 2 we have proved weighted estimates for the dyadic maximal operator. Now we refine
these estimates following [HP13].

Proposition 8.1. Let 1< p <∞ and let v, w be weights. Then

‖M( f v)‖Lp(w) ®p [v, w]1/p
′,1/p[v]1/pA∞

‖ f ‖Lp(v).

This is indeed a refinement of our previous result because if the weights are related by v1/p′w1/p ≡
1, then the product of the above characteristics is bounded by [w]p

′/p
Ap

. Moreover, the A∞ characteristic
above can be substantially smaller than [v]Ap′

(example: power weights).
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Proof. We start with the stopping collection S as in Lecture 2 which is sparse with respect to the
reference measure µ and such that

M( f v)®
∑

Q∈S
( f v)Q1E(Q).

Next we construct a second stopping collectionF with respect to the measure vdµ as follows. Denote
( f )Q,v = v(Q)−1

´
Q f v = ( f v)Q/(v)Q. Assuming without loss of generality that D is finite we put the

maximal elements of D into F . Then for each Q ∈ F we add all maximal Q′ ⊂Q with Q′ ∈ D and
( f )Q′,v > 2( f )Q,v to F . Then

‖M( f v)‖p
Lp(w) ®

ˆ
∑

Q∈S
( f v)pQ1E(Q)w

=
∑

Q∈S
( f )pQ,v(v)

p
Q

ˆ
E(Q)

w

=
∑

F∈F

∑

Q∈S :πF (Q)=F

( f )pQ,v(v)
p
Q

ˆ
E(Q)

w

®
∑

F∈F
( f )pF,v

∑

Q∈S ,Q⊆F

(v)pQw(Q),

where πF (Q) is the smallest member of F containing Q. Notice that
∑

F∈F
( f )pF,v v(F)®

∑

F∈F
( f )pF,v v(Ẽ(F))®

ˆ
(Mv f )pv ®

ˆ
( f )pv

by the Lp estimate for the weighted maximal function Mv . Hence it remains to estimate

v(F)−1
∑

Q∈S ,Q⊆F

(v)pQw(Q)≤ [v, w]p−1,1v(F)−1
∑

Q∈S ,Q⊆F

(v)Q|Q|

® [v, w]p−1,1v(F)−1
∑

Q∈S ,Q⊆F

(v)Q|E(Q)|

® [v, w]p−1,1v(F)−1
ˆ

F
M(v1F )

≤ [v, w]p−1,1[v]A∞ .

The next objective is a similar estimate for sparse operators. Since the maximal function is
dominated by sparse operators, we cannot expect the estimate for sparse operators to be better than
for maximal. Moreover, the estimate for sparse operators should be symmetric in the weights v and
w (by duality). Hence the following result may be expected.

Proposition 8.2 ([HL15]). Let 1< p <∞ and v, w be weights. Let S be a sparse collection. Then

‖AS ( f v)‖Lp(w) ® [v, w]1/p
′,1/p([v]1/pA∞

+ [w]1/p
′

A∞
)‖ f ‖Lp(v).

Proof. By duality ‖AS ( f v)‖Lp(w) = supg:‖g‖
Lp′ (w)

=1

´
AS ( f v)gw, so it suffices to show

∑

Q∈S
( f v)Q(gw)Q|Q|® [v, w]1/p

′,1/p([v]1/pA∞
+ [w]1/p

′

A∞
)‖ f ‖Lp(v)‖g‖Lp′ (w).

Construct the stopping family F as before and G similarly for the function g and the measure wdµ.
Then the left-hand side above is bounded by

∑

F∈F
( f )F,v

∑

G∈G
(g)G,w

∑

Q∈S :πF (Q)=F,πG (Q)=G

(v)Q(w)Q|Q|.
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We can split the sum into two parts: F ⊆ G and F ) G. Since both parts are symmetric (under
interchanging f with g, v with w, and p with p′) we consider only the second. We rewrite that part
as ˆ

∑

F

( f )F,v

∑

G:πF (G)=F

(g)G,w1G

∑

Q∈S :πF (Q)=F,πG (Q)=G

(v)Q1Qw

By Hölder’s inequality this is bounded by

�

ˆ
∑

F

�

∑

G:πF (G)=F

(g)Q,w1G
�p′w

�1/p′�
ˆ
∑

F

( f )pF,v

�

∑

G:πF (G)=F

∑

Q∈S :πF (Q)=F,πG (Q)=G

(v)Q1Q
�pw

�1/p
.

The first bracket is bounded by ‖Mw g‖Lp′ (w) ® ‖g‖Lp′ (w). We write the second bracket as

�
∑

F

( f )pF,v

ˆ
�

∑

Q∈S :πF (Q)=F

(v)Q1Q
�pw

�1/p
.

Multiplying and dividing each summand by v(F) and observing that

∑

F

( f )pF,v v(F)®
ˆ
(Mv f )pv ® ‖ f ‖Lp(v)

it remains to show

v(F)−1
ˆ
�

∑

Q∈S :Q⊂F

(v)Q1Q
�pw ® [v, w]p−1,1[v]A∞ .

This is more difficult than the corresponding step in the estimate for the maximal operator since now
the sum is inside the power p. To get some feeling for what is going on let us first consider the case
p = 2. Then the left-hand side is

≤ 2v(F)−1
∑

Q′⊆Q⊆F

(v)Q′(v)Qw(Q′)≤ [v, w]1,1v(F)−1
∑

Q′⊆Q⊆F

(v)Q|Q′|

® [v, w]1,1v(F)−1
∑

Q⊆F

(v)Q|Q|

® [v, w]1,1[v]A∞ ,

where we have used sparseness of S in the penultimate step and argued as in the estimate for
maximal operator in the last step.

For general p we use the numerical inequality

(
∑

i

ai)
p ®

∑

i1≥i2≤···≥ibpc

ai1 · · · aibpc(
∑

ibpc≥i

ai)
{p}7 (8.3)

to estimateˆ
�

∑

Q∈S :Q⊂F

(v)Q1Q
�pw ®

ˆ
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpc1Qbpc

�

∑

Q⊆Qbpc

(v)Q1Q
�{p}w.

By Jensen’s inequality this is bounded by

∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1

ˆ
∑

Q⊆Qbpc

(v)Q1Qw
�{p}

=
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1
∑

Q⊆Qbpc

(v)Qw(Q)
�{p}.
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Consider first the case p < 2, so that bpc= 1 and 1/p > 1/p′. Then we estimate this by

=
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1
∑

Q⊆Q1

(v)Q(w)Q|Q|
�{p}

≤ [v, w]{p}(p/p
′,1)
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1
∑

Q⊆Q1

(v)1−p/p′

Q |Q|
�{p}

Using Lemma 8.4

® [v, w]{p}(p/p
′,1)
∑

F⊇Q1

(v)Q1
w(Q1)

�

w(Q1)
−1(v)1−p/p′

Q1
|Q1|

�{p}

= [v, w]{p}(p/p
′,1)
∑

F⊇Q1

|Q1|(v)
1+(1−p/p′){p}
Q1

(w)1−{p}Q1

≤ [v, w](p/p
′,1)
∑

F⊇Q1

|Q1|(v)
1+(1−p/p′){p}−(p/p′)(1−{p})
Q1

= [v, w](p/p
′,1)
∑

F⊇Q1

|Q1|(v)Q1

and using sparseness of Q
® [v, w](p/p

′,1)[v]A∞ v(F).

Consider now the case p ≥ 2, so that 1/p ≤ 1/p′. Then we estimate

=
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1
∑

Q⊆Qbpc

|Q|(v)Q(w)Q
�{p}

≤ [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1
∑

Q⊆Qbpc

|Q|(w)1−p′/p
Q

�{p}

Using Lemma 8.4

® [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)

�

w(Qbpc)
−1|Qbpc|(w)

1−p′/p
Qbpc

�{p}

= [v, w]{p}(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpcw(Qbpc)(w)

−{p}p′/p
Qbpc

≤ [v, w]{p}(1,p′/p)+(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc

(v)Q1
· · · (v)Qbpc−1|Qbpc|(w)

1−{p}p′/p−p′/p
Qbpc

Using Lemma 8.4 again

® [v, w]{p}(1,p′/p)+(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc−1

(v)Q1
· · · (v)Qbpc−1|Qbpc−1|(w)

1−{p}p′/p−p′/p
Qbpc−1 .

Continuing in this manner we obtain inductively

® [v, w]{p}(1,p′/p)+m(1,p′/p)
∑

F⊇Q1⊇···⊇Qbpc−m

(v)Q1
· · · (v)Qbpc−m|Qbpc−m|(w)

1−{p}p′/p−mp′/p
Qbpc−m .

For m= bpc − 1 this gives the estimate

® [v, w]{p}(1,p′/p)+(bpc−1)(1,p′/p)
∑

F⊇Q1

(v)Q1
|Q1|(w)

1−{p}p′/p−(bpc−1)p′/p
Qbpc−m
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= [v, w](p−1)(1,p′/p)
∑

F⊇Q1

(v)Q1
|Q1|(w)

1−(p−1)p′/p
Qbpc−m

= [v, w](p/p
′,1)
∑

F⊇Q1

(v)Q1
|Q1|

and using sparseness of S again

® [v, w](p/p
′,1)[v]A∞ v(F).

In the above proof we have used repeatedly the following fact.

Lemma 8.4. Let 0≤ β < 1 and let S be sparse. Then for every non-negative function v we have
∑

Q∈S ,Q⊂F

|Q|(v)βQ ® |F |(v)
β
F .

In the case β = 1 the implicit constant in this lemma has to be replaced by A∞.

Proof. The left-hand side is bounded by

∑

Q

|E(Q)|(v)βQ ≤
ˆ

F
(M(v1F ))

β ®
∑

k∈Z
2kβ |F ∩ {M(v1F )> 2k}|

≤
∑

k∈Z
2kβ min(|F |, |{M(v1F )> 2k}|)≤

∑

k∈Z
2kβ min(|F |, 2−k‖v‖L1(F))

= |F |
∑

k∈Z
2kβ min(1, 2−k(v)F )® |F |

∑

k∈Z
(v)βF ,

where in the last inequality we have used that a geometric series is dominated by its larges term.

Proof of (8.3). The claim (8.3) follows by bpc applications of the following inequality (valid for
p ≥ 1):

(
∑

i

ai)
p ≤ p

∑

i1

ai1(
∑

i1≥i

ai)
p−1. (8.5)

To show this inequality notice that it suffices to consider finite sequences (ai). For real a, b ≥ 0 we
have

(a+ b)p = ap +
ˆ a+b

a
pt p−1dt ≤ ap + p(a+ b)p−1

ˆ a+b

a
dt = ap + p(a+ b)p−1 b.

Using this inequality with a =
∑m

i=1 ai , b = am+1 we obtain

(
m+1
∑

i=1

ai)
p ≤ (

m
∑

i=1

ai)
p + pam+1(

m+1
∑

i=1

ai)
p−1,

and the claim (8.5) follows by induction on m.
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9 Weighted weak type (1,1) for sparse operators

9.1 Orlicz spaces

Definition 9.1. A Young function is a convex increasing function ϕ : [0,∞) → [0,∞) such that
ϕ(0) = 0 and limt→∞ϕ(t) =∞.

Lemma 9.2. Let ϕ be a Young function with limt→∞ϕ(t)/t =∞. Then

ψ(s) = sup
t>0
(st −ϕ(t))

is also a Young function, called the complementary Young function of ϕ.

Proof. All properties are easy to verify with the possible exception of convexity. Let 0≤ s0 < s1 <∞
and 0< λ < 1. Then

ψ((1−λ)s0+λs1) = sup
t>0
(((1−λ)s0+λs1)t −ϕ(t))

= sup
t>0
((1−λ)(s0 t −ϕ(t)) +λ(s1 t −ϕ(t)))

≥ sup
t>0
(1−λ)(s0 t −ϕ(t)) + sup

t>0
λ(s1 t −ϕ(t))

= (1−λ)ψ(s0) +λψ(s1).

Example. If ϕ(t) = t p, then ψ(s) = sp′ (exercise).

Definition 9.3. Let (X ,µ) be a measure space and ϕ a Young functional. The Orlicz space ϕ(L)(X ,µ)
is defined by

‖ f ‖ϕ = inf{Λ> 0 :
ˆ

X
ϕ(| f |/Λ)≤ 1}.

It is clear that this defines a homogeneous functional, and quasisubadditivity is also not hard to
verify.

Lemma 9.4. Let ϕ be a continuous Young function and ψ its complementary Young functions. Then

‖ f ‖ϕ ∼ sup
g:‖g‖ψ≤1

ˆ
X
| f g|dµ.

Proof. First we show ¦. Notice thatψ(s)+ϕ(t)≥ ts for all t, s > 0. Suppose ‖ f ‖ϕ < 1 and ‖g‖ψ < 1.
Then ˆ

| f g| ≤
ˆ
{ f g 6=0}

ϕ(| f |) +ψ(|g|)≤ 2.

For the converse we notice

ψ(ϕ(u)/u) = sup
t>0

tϕ(u)/u−ϕ(t) = sup
0<t≤u

tϕ(u)/u−ϕ(t)≤ sup
0<t≤u

tϕ(u)/u= ϕ(u),

where we have restricted the parameter in the supremum using concavity of the argument and the
fact that the argument vanishes at 0 and at u. Suppose now that ‖ f ‖ϕ > 1 and without loss of
generality f ≥ 0. Then for every Λ > 1 we have

´
ϕ( f /Λ) < 1, so with gΛ = ϕ( f /Λ)/( f /Λ) we

obtain ˆ
ψ(gΛ)≤

ˆ
ϕ( f /Λ)< 1.

On the other hand, ˆ
f gΛ =

ˆ
Λϕ( f /Λ)→

ˆ
ϕ( f )≥ 1

as Λ→ 1.
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Theorem 9.5 ([DSLR16, Theorem 1.6]). Let ϕ be a Young function and ψ its complementary function.
Let S ⊂ D be a 1/16-sparse collection. Then

sup
λ>0
λw{AS f > λ}®

∞
∑

k=1

1

ψ−1(22k)

ˆ
| f |Mϕw,

where ψ−1 denotes the inverse function of ψ and

Mϕw(x) = sup
x∈Q∈D

(w)Q,ϕ, (w)Q,ϕ = inf{ν > 0 :
 

Q
ϕ(w/ν)≤ 1}.

Corollary 9.6. Theorem 9.5 applies if ϕ(t) = t L(t) with 0≤ sL′(s)≤ C and
∑

k≥1 1/L(22k
)<∞, in

particular e.g. if L(t) = ln ln t(ln ln ln t)1+ε.

Proof.

ψ(L(t)) = sup
τ>0
(L(t)τ−ϕ(τ)) = sup

0<τ≤t
τ(L(t)− L(τ))≤ sup

0<τ≤t
τ(L(t)− L(τ))

® sup
0<τ≤t

τ

ˆ t

τ
s−1ds = sup

0<τ≤t
τ ln(t/τ)® t.

It follows that L(t)≤ψ−1(C t).

It is known that Theorem 9.5 fails if ϕ(t) = o(t ln ln t) [CLO17]. We will prove an earlier result
that it fails if ϕ(t) = t [RT12]. It also seems to be known that the norm of the Hilbert transform from
L1(w) to L1,∞(w) grows faster than linearly in [w]A1

[NRVV15; NRVV16], but this is a more difficult
result.

Lemma 9.7 (cf. [CUP00]). Let T be a linear operator on L2(Rd) and T ′ its adjoint. Assume that

‖T ′ f ‖L1,∞(w) ® ‖ f ‖L1(Mw).

Then ˆ
|Tw|2(Mw)−2w ®

ˆ
w.

Proof. Let w be a weight. Note

M(w1Ω)(x)® sup
x∈I∈∪αDα:w(I)6=0

w(I)
I

�

w(I)−1
ˆ

I
1Ωw)≤ sup

α
MDα(w)(x)MDα,w(1Ω)(x).

Let w be a weight, f a function supported on W = supp w, and Ω = {|T ′ f |> 1}. Then

w(Ω)®
ˆ

W
| f |M(w1Ω)≤

∑

α

(
ˆ

W
| f |2MDα(w)

2w−1)1/2(
ˆ

W
MDα,w(1Ω)w)

1/2

® (
ˆ

W
| f |2M(w)2w−1)1/2w(Ω)1/2,

where we have used the L2 estimate for the weighted dyadic maximal function. Dividing both sides
by w(Ω)1/2 and using homogeneity we obtain

‖T ′ f ‖L2,∞(w) ® ‖ f ‖L2(W,(Mw)2w−1).

By duality for functions g supported in W we have
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‖T g‖L2(W,(Mw)−2w) = ‖(Mw)−1w1/2T g‖L2(W ) = sup
‖ f ‖L2(W )=1

|
ˆ

f (Mw)−1w1/2T g|

= sup
‖h‖L2(W,(Mw)2w−1)=1

|
ˆ

hT g|= sup
‖h‖L2(W,(Mw)2w−1)=1

|
ˆ
(T ′h)g|

≤ sup
‖ f ‖L2,∞(w)®1

|
ˆ

f g|.

Substituting g = w we obtain on the right-hand side

sup
‖ f ‖L2,∞(w)®1

|
ˆ

f w|® (
ˆ

w)−1/2(
ˆ

w) + sup
‖ f ‖L2,∞(w)®1

∑

k∈Z:2k≥(
´

w)−1/2

2k+1
ˆ
{2k<| f |≤2k+1}

w

® (
ˆ

w)1/2+
∑

k∈Z:2k≥(
´

w)−1/2

2−k ® (
ˆ

w)1/2.

Construct collections of intervals in R as follows. Fix large k ∈ N. Let J1 = {[0,1]}. For each
l and each J ∈ Jl subdivide 1

3
J into 3k−1 intervals of length 3−k|J | (call the set of these intervals

ch(J)) and add all these intervals to Jl+1.
For each l and J ∈ Jl let P(J) be an interval of length 3−k|J | situated either to the left or to

the right from 1
3
J (we will decide later on which side each P(J) is situated). Then the intervals

P(J), J ∈ ∪lJl are pairwise disjoint. Let Ωl = ∪J∈Jl
P(J), Ω′l = ∪J∈Jl

1
3

P(J), and consider the weight

w =
∞
∑

l=1

� 3k

3k−1+ 1

�l
1Ωl

.

Lemma 9.8. Mw ® w on ∪lΩ′l no matter how P(J) are chosen.

Proof. Let x ∈ 1
3

I , I = P(J), J ∈ Jl . On Ωl ′ with l ′ ≤ l we have w ≤ w(x), so it suffices to consider

contributions of Ωl ′ with l ′ > l. The point x is separated from Ωl ′ at least by 1
3
|I |, so we may restrict

the supremum in the definition of maximal function to intervals whose endpoints are multiples of |I |.
By construction w(J ′) = w(P(J)) for each J and J ′ ∈ ch(J), and it follows that on each interval of
length |I | the mass of w does not exceed w(I).

Lemma 9.9. One can choose P(J) in such a way that |Hw| ≥ (k/3)w on ∪lΩ′l , where H is the Hilbert
transform.

Proof. Let l ∈ N, J ∈ Jl , I = P(J), x ∈ 1
3

I . Split
ˆ

w(y)
y − x

dy =
ˆ

I

w(y)
y − x

dy +
ˆ

1
3

J

w(y)
y − x

dy

+
ˆ

J c

w(y)
y − c(J)

dy +
ˆ

J c

� w(y)
y − x

−
w(y)

y − c(J)

�

dy.

The first and the last summands are bounded by Cw(x). The third summand only depends on the
choices of P(J) for J ∈ Jl ′ with l ′ < l. The absolute value of the second term is bounded below by
kw(x), and this term can be positive or negative depending on the choice of P(J). Choose P(J) so
that the sign of this term matches the sign of the third term.

Using these two results and assuming that the Hilbert transform satisfies ‖H f ‖L1,∞(w) ® ‖ f ‖L1(Mw),
using also Lemma 9.7, we obtain

k2
ˆ

w ® k2
ˆ
∪lΩ′l

w ®
ˆ
|Hw|2(Mw)−2w ®

ˆ
w

and this is a contradiction for large k.
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