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[19.04.2017]

1 Introduction

Around 1900 (Rutherford model, Dynamiden model, Bohr model, Bohr-
Sommerfeld model): Positively charged small nucleus contains most of mass,
with negatively charged electrons around. There is evidence for a discrete set
of energy levels corresponding to sharp spectral lines (stars, heated metal).

Maxwell published around 1861 equations describing basically all electro-
magnetic effects known at that time:

1
V-E = —p
€0
V-B =0
0B
E = 2~
v ot
. oF
VXB = poj+ Hogo o

where F is the electric field, B is the magnetic field, p is the charge density,
J is the electric current, pgey = C% with permeability pg and permittivity &g.

Theory of electromagnetic waves, beautiful theory combining previous
complicated special theories of magnetism, elctromagnetic waves and cur-
rents.

It immediately implies constant finite speed of light. This was a major
motivation for Einstein to develop special and general relativity. However, it
leads to a severe conflict with atom models: rotating electrons radiate energy
and hence lose energy fast!

Quantum mechanics provides an extremely good description of atoms and
molecules. It raises however questions:

1. How does quantum mechanics interact with light? This is answered in
quantum electrodynamics.

2. Why is the nucleus stable? Radioactive decay shows that the nucleus
consists of smaller parts, which carry a large positive charge on a small
area. How can it be stable, when equal charges repel with a force which
is the inverse square of the distance? This is answered by quantum
gauge theories.
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Beyond describing atoms and molecules well quantum mechanics provides
insights for the modifications needed for quantum field theories. It is remark-
able that a large part of quantum mechanics was developed within around 20
years, with the formulation of quantum mechanics completed around 1925,
and quantum theory of light until 1935, with important contributions by
Fermi, Heisenberg and Dirac.

1.1 The formalism of quantum mechanics

The formalism was developed by Schrodinger, Heisenberg, Born, Jordan, v.
Neumann, Weyl, Dirac: from around 1920 to 1930. Quantum mechanics
centers around the Schrédinger equation

2
ithoyu + h—Au =Vu on R x RY
2m
u(0,z) = ug(x) on R?

where V : R? — R is a potential like |z|~t.
If V' = 0 we obtain a solution in the same way as for the heat equation:

m \5 imlz—y[?
“<t’$)_<2mht>2/ﬂwe e to(y)dy.

Keywords are Uncertainty relation, Wave mechanics, Schrodinger equa-
tion. A key step was the Copenhagen interpretation of the |u|?* as probability
distribution.

Later developments include

e Quantum electrodynamics QED with Dirac as a central figure. It is a
relativistic quantum theory.

e Quantum chromodynamics QCD (Gauge theory), quarks and gluons,
confinement (no free quark) and asymptotic freedom (Politzer, Wilczek,
Gross (Nobel prize 2004)), standard model

e So-called effective quantum field theories deduced from QCD allow to
analyse the atomic nucleus, hadrons, protons and neutrons.

Quantum physics leads to an amazing agreement between theory and
experiment. Quantum mechanics is a solid mathematical theory, in contrast
to quantum electrodynamics. In quantum electrodynamics there is a solid
procedure for calculating important quantities. The status of quantum gauge
theories looks much less clear to me. It allows to obtain good effective field
theories.

bt [JuLy 26, 2017]



However the nature of measurements remains unclear. A quantum theory
including gravity seems out of reach at this point. One may wonder whether
the situation is comparable to the end of the 19th century, when Maxwell’s
equations provided an amazing unification and consistent understanding, but
with striking puzzles.

1.2 The double slit experiment: Wave particle duality

At the end of the 19th century Planck described black-body radiation. Black
body radiation and the photoelectric effect remained mysterious when elec-
tromagnetic waves were considered as waves. The photoelectric effect led
Einstein to the hypothesis that light has a particle character in certain sit-
uations (Nobel Prize in 1921). The particles are called photons in 1926 by
Wolfers and Lewis. Compton performed experiments which showed that
photons scatter at electronics, leading to the Nobel prize in 1927. Currently
Meschede (Bonn) is working with quantum systems of around 100 photons
at temperatures 1075 degree Kelvin.

On the other hand Louis de Broglie, Bohr and others realised that parti-
cles behave like waves. The most intriguing thought experiment is the double
slit experiment. If we fix the frequency (colour) of the light, and reduce the
intensity, then a light source emits single photons.

Let us send the photons through a double slit. Waves sent through a slit
showed an intricate pattern on a screen. With a double slit there is some
interference from both slits.

It turns out that the interference pattern does not change even if we make
sure that the single photons hit the screen one by one. The patter is not the
sum of two single slits! So mysteriously light behaves wavelike even if we
know that there is only one photon at a time!

This thought experiment has been realized with electrons by Thomson
and Davisson, Germer in 1927 (Nobel Prize for Davisson and Thomson in
1937). A spectacular point was Zeilinger et al (1999, Nature: Wave-particle
duality of Cgo(Fullerene)).

1.3 Outline

2. The Fourier transform
3. Selfadjoint operators

4. Examples: Free particles, the harmonic oscillator and the hydrogen
atom.
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5. Symmetry groups
6. Scattering

7. Multiparticle systems

2 The Fourier transform

2.1 The definition in L!

Recall: Fourier series in one dimension. Let f € L} (R) be 27 periodic. It
can be formally written as ‘
f _ Z akezkm

keZ
with .
ag = %/Rf(x)eikxdx.

By Plancherel’s formula
2 _ 2
HfHL2(0,27r) = 2772 [
keZ
Fourier series express a periodic function in terms of pure harmonics e**
with frequency k.

Definition 2.1. Let f € LY(R%; C). We define its Fourier transform by

>
vl

f(k) = F(f)(k) = (2m)~

f(z)e *dy
Rd

for k e R

Lemma 2.2 (Riemann-Lebesgue). Let f € LY(R% C). The Fourier trans-
form f is continuous and satisfies

lim f(k) = 0.

Proof. Let f e L*(R%C) and k; — k. Then

Fla)e e — fa)e

for every z € R? and

[f(@)e™] = |f ()],
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hence |f| is an integrable majorant. By the convergence theorem of Lebesgue

f(x)e *edy — fx)e *dy
Rd Rd

and hence k — f(k) is continuous.
Since f € L'(R%C) there exists a sequence f; € CF(R% C) of smooth
functions with compact support with f; — f in L'(R% C). Then

fi(x)e ™ *de — | f(z)e **dx
Rd Rd

< / fy(a) = f(a)ldz — 0
R4
uniformly in k. Hence it suffices to prove that
fi(z)e * *dr — 0 as |k| — .
Rd
If the Ith component k; # 0 then for any f e Ci°(R?; C),

' 1 : 1 .
f(x)e "dr = fla)——0p e ode = — [ (0, f)e **da
R4 Rd _Zkl Zkl R4

which tends to 0 as |k;| tends to . O

The Fourier transform is a continuous linear map from L!(R?) to Cy(RY),
the space of continuous functions decaying at co. Trivially, with Cy(R?) the
space of bounded continuous functions equipped with the supremums norm

A _d
[fley@ey < @m) 72 fllLr @e)-

We recall the definition of the convolution
frot) = [t oy
R

which satisfies (assuming that the convolution is a measurable function),

I eglo = [ | e =gty
< [ 1= latoldyda

- [lowl [ 1@ = ldady

=|fllztlgl

dz
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by a multiple application of the theorem of Fubini. More generally Young’s
inequality
If * gllr@ay < | fllze®ayllg] Lamay

holds whenever 1 < p,q,r < oo and
1 1 1

-4+ -—-=1+-.

p q r
The convolution is commutative f = g = g = f and associative (f = g) = h =
f=(g=h) and can be defined for distributions (see Lecture notes on Functional
Analysis and PDE, or Lieb and Loss: Analysis).

[19.04.2017]

121.04.2017]

We also have L
F(f=g)(k) = (2m)>(f9) (k) (2.1)
for f,g € L*(R%). This is seen by the calculation
[ [ 1= votduds
R Rd

_d
2

(2m)
— (27)° % —iky —ik-(z—y) _
(2m) /Rde 9(y) /Rde flx —y)dz dy

é ~ A~
= (2m)2g(k) f (k).
Let A! be the transpose of a matrix and A~* the inverse of the transpose

(if it is invertible).
Lemma 2.3. Let A be a real invertible d x d matriz and f € L*(RY). Then

F(foA) (k) = |det A|"' f(A™k).

Moreover )
F(f(+h)(k)=e*"f(k), VheR"
O

Proof. Exercise.
The Fourier transform of finite Borel measures p is defined by

er) [ e eduta),

A particular case is the Dirac measure with
50 = (27-(-)*% .

It acts as identity under the convolution.

9
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2.2 The Schwartz space

In this subsection we study the Fourier transform of smooth decaying func-
tions. This simplifies formal manipulations.

Definition 2.4 (Schwartz functions). A function f € C*(R%; C) is a Schwartz
function if for every multiindices o and B the function

2P f

is bounded. The space of Schwartz functions is denoted by S(RY). We say f,
converges to f in S(R?) if for every multiindices o and (3

0% f, — 0% f
uniformly in x.
First properties are:
1. feS(R?) implies z; f € S(R?) and 0,, f € S(R?).
2. feS(RY) and g € C°(RY) implies ¢gf € S(RY).
3. feS(RY) and g € L' with compact support implies f * g € S(R?).

4. f e S(RY) and g a distribution with compact support implies f = g €
S(R%): Suppose g is supported on K < R¢ compact. Then there exist
C and k so that

(@)l <€ sup  [0%¢(x)|.

|a|<k,xeK

Since

frg(x) = » flx—=y)g(y)dy = g(f(z —.))

we obtain that

2707 (f * g)(x)] < C sup sup|(z + 2)70°*7 f(x))|

mv‘a|<k ZGK
is uniformly bounded.

5. f € S(RY) implies f € LP(R?) for 1 < p < 0. Moreover f; — f in
S(R?) implies f; — f in LP for all 1 < p < 0.

6. f,ge S imples f+xgeS.

. . _ 1.2 .
7. Gaussian functions e~ 211" are Schwartz functions.
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Lemma 2.5. Let f € S(RY). Then f € S(RY) and

F(z;f) (k) = i, f (k) (2.2)
F(0;f)(k) = ik; f (k) (2.3)

If also g € L' then

Wl

F(f»9)(k) = (2m)2 f(k)g(k) (2.4)

and
d ~
3

F(fg)(k) = (2m)~= f (k) = (k) (2.5)
Proof. We first prove the first two formulas:

)t [ it tde = ot [ g e = o )

and by integration by parts, and by application of the theorem of Fubini

NI
[I[oH

(2m) /R e f)e = (m) [ ) = ik ()

R4

We recall that f € S(R%) and we want to verify that f € S(RY). Let « and
£ be multiindices. Then, by a recursive application of the previous formulas

K3 (k) = (=0) P F (@27 ) k)

which is the Fourier transform of a Schwartz functions, and hence bounded.
Thus f € S(R%). We have already proven the third formula for L' functions,
which implies the third formula here. The last formula will be a consequence
of the inversion formula. O

We want to calculate several Fourier transforms. We recall that (see also

the appendix)
/ e 2l gy = (2m)
Rd

On the other side, F(e2/"*) satisfies the following equation

d
2 .

0= F(0y,e 2 4 ajem3) = i(0), + k) Fe 2 (k).

The differential equation
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is linear, of first order, and it has a one dimensional space of solutions
exists C' so that
¢ = Ce 2"

Hence we obtain recursively

.7:(6’%“'2) = pag_1(z1, .. .xd,l)e’a“‘z —ce Si71’

Since

we obtain

Now let d = 1 and

fe e 7 ifz>0
N 0 if x <0.

Then

1+ ik
Now let f(x) = e1#l. The same calculation shows that
1 1 1
+ = /2.
Tt TV TR

Now let f(z) = (1 + |z|*)~!. It is integrable. Let k < 0. Then

[N

f(k) = (2m)”

o R
/ e (1 + 2*)'dx = lim e (1 + %) da

0 R—w J_p

= lim [ e (1 + 2%)7'dz
R—o0 5

where 7 is the clockwise path around the upper semidisk of radius R
true since k < 0). Now

1,1 1
_2_2(

(Z+ 1)1

).

z2—1 zZ+1

: There

(this is

Let U c C and f : U — C. It is holomorphic if it is everywhere differen-

tiable and satisfies the Cauchy-Riemann differential equations,

o;Ref=0,Imf d,Ref=—0,Imf.
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Let U < C have a smooth boundary. Let 7y be the path defined by the
boundary with the orientation so that U is always on the left. The Cauchy
integral theorem says that if f is holomorphic on V', U < V and U is simply

connected then
/ fdz=0.
Y0

By the Cauchy integral theorem

- 1
/e’kz—,dz = 0.
y Z+1

By the residue theorem (or as a consequence of the Cauchy integral theorem)

e~ dy = 2miel.
- z—1

We obtain (with a similar argument for k£ > 0)

flk) = A/m/2e7 M.

21.04.2017]
26.04.2017]
2.3 Fourier inversion
We begin with two simple calculations.
Lemma 2.6. Let f,ge L'(RY). Then
fodz = / fadk, (2.7)
R R4

and, for m e R,
emzf = f(k—m).
We have for a > 0
F<€7§|m|2) — g~ Yo"z M’

Proof. Both sides of the first equality are equal to

(2m) =42 /Rd g f(x)g(k)e * *dkdx.

The second equality is a direct calculation:

24 /Rd T (e = (%)g/R e (1)

d

The third equality is a special cases of exercises. O]
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Definition 2.7. Let f € L*(RY). We define

Jl@) = F (D)) = )78 | fledk

We will see that this map is the inverse of the Fourier transform, which
will justify the notation. Clearly f(k) = f(—k). All the previous results have
analogues for F1.

Theorem 2.8. Let f € S(R?), Then

FF(f)(@) = f(z) = FF(f)(2).
Proof. Let f e S(RY). We calculate

. . 2 o
(QW)_% ) f(k)ezkzdk _ hH(l)(Qﬂ')_% /d 6_7\16\2+zk-xf(k,)dk
R & R

= lim (2#)*%6*de_ﬁ|z_y|2f(y)dy
e—0 ]Rd

= f(z).

We explain the above calculation one equality by one: The first equality fol-
lows by pointwise convergence; For the second one we apply the first state-

&2 . .
ment of Lemma with g. = e~ 2*’+#2 where by the second and third
statement of Lemma [2.6]

— 1 y—x|2
de 252|y II ;

ga(y) =€
The last equality holds since g. is a Dirac sequence. O]

In particular the inverse of the Fourier transform represents a function as
sum resp. integral of complex exponentials. Again the symmetry between
functions and their Fourier transform is visible. The formula ({2.5))

_d
2

fg=0@m)tf+g

is equivalent to ([2.4])
—_— é
frg=(2m)2fg.
Equation (2.7) has more interesting consequences.
Theorem 2.9. Let f,ge S(RY). Then
fgde = | fodk,
R R

and the Fourier transform defines a unitary operator from L*(RY) to itself.
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Proof. This follows from
fode = | fagde = | fadk.
Rd R4 Rd
In particular X
[ Fllz2 = 1f]z2-

Let f € L. There exists a sequence f, € S with f, — f in L2 Then f, is
a Cauchy sequence and there is a unique limit in L2. We define the Fourier
transform of f as this limit. This is a unitary operator. O

It is not hard to check that
F(FU)(z) = f(-=)

and hence the fourth power of the Fourier transform is the identity.

Lemma 2.10. We can decompose any function f in L*(R%; C) into

f=h+fa+fitfa
so that
1£172 = [ il 72 + Nf-al7z + | fill 7z + | =l Z2
and K R R R
h=h, fa=—fa, [i=if;, Joi=—if
The decomposition is unique.

The proof is an exercise.
_l=? LI
We have seen that Fe 2 =e¢e 2 . Since

we have
_ 1K

f =500 — ket = ~if(h)

and similarly, for multiindices «

1 . 2 ZQ
ha(w) = [5(x = 0)]°™% = Ha(a)e™ *
we have ,
Hy = hoe'® and hy = (—i)%h,.

The functions h, are called Hermite functions and H, are the Hermite poly-
nomials.

[26.04.2017]
28.04.2017]
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2.4 Tempered distributions

Lemma 2.11. The Fourier transform defines a continuous map from S to

S.

Proof. This is an immediate consequence of the continuity F : L' — C}, and
the formula

ko0 f, = it 8lgags
Lemma 2.12. Let f € S(RY). Then

e*ﬁ‘xlgf — f in S(RY) asn — o

and ,
d n
@2m) znde Tkl s f 5 f in S(RY) as n — oo.

Proof. The statements exchange their roles under the Fourier transform. It
suffices to prove the first claim. Since

1

ooem | < (sup o 30 ) | !
Yy
then

z0%(e7 27— )] =

2 Cﬁlﬁ[aﬂl(e—ﬁm‘? - 1)(96‘“652]”)] <

B1+52

uniformly in x. This is clear if 5; > 0. If 5; = 0 we use
2

|e—#‘w|2 -1 < ﬁ

2n?

O

Definition 2.13. A tempered distribution is a continuous linear map from
S(R?) to C. We denote the set of tempered distributions by S*(RY). We say
that T; — T € S*(RY) if

T(f) — T(f)

for all f € S(R?).
Remarks.

1. We call T continuous if f; — fin S then T'(f;) — T(f).
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2. It is a consequence of the uniform boundedness principle that for 7" €
S*(R?) there exist C' and N so that

ITf|<C sup supl|a®d’f(z)] (2.8)

la|+[BI<N =

and if T — T there exists N so that

lim sup{|Tf — T;f|: sup sup|z*d’f(z)] <1} = 0.
j— jol+18|<N @

3. Every function f € L'(R?) defines a tempered distribution T} € S*(R?)
by Tr(g) = [za fgdz.

Definition 2.14. Let ¢ € C° be a smooth function with bounded derivatives
and T € §*. We define the product by

T (f) =T(of),
the derivative by
(aZ’JT)(f) = _T(aa:jf)7
and the convolution with a Schwartz function f by

T = flx) =T(f(x—".)).

We define the Fourier transform by

A

T(f)=T(f), T())=T(f), feS
Lemma 2.15. Whenever the operations are allowed we have

6%. Tf = Tazj f

OTy = Tyy
Tg*fzf*g
Ty = T;
T-T=T

All (reasonable) maps are continuous. Moreover, given T there exists N so
that

09T « f(z)| < c;(1+ |2])N, Va, VfeS.
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Proof. We only prove some typical statements:
00 T1(0) = ~Ty(00,0) =~ [ for,0dn = [ 0,104 = Ts, s(0),
R R

T(p) = T(§) = T($) = T(9).
Since

T« f=T=(0"f),
it suffices to consider o« = 0 for the second statement:

T+ f(z)| =|T(f(x—)| <C sup sup|(z—y)""f(y)|

YI+IBISN Y

|$_y|\’v\ 2\N | A8
<c sup sup o (sup sup(1 + [y%)¥12° £ (5)])
vy (LYY \gian y

<cp(1+ )Y

where we used that the polynomial (1 + |y|*)" is a sum of monomials, in the
same way as every polynomial. O]

Lemma 2.16. S(RY) is dense in S*(R?).
Proof. For all fe S(R?)

n2
(2m)"tnde= Tl & (e7lalP/m® £y _, in S
asm_)ooandnﬁoo. ThuS
P oyt 1) 7

in 8*. The convolution in the bracket satisfies a polynomial bound, and
hence the left hand side is in S. m

Definition 2.17. Let T be a (tempered) distribution. The support of T is
the complement of all points x for which there exists r > 0 so that

Tf=0
whenever supp f € B,.(x).

As consequence we have fT" = 0 and T(f) = 0 whenever supp f N
supp T = {} (this can be seen by a partition of unity).

Lemma 2.18. The tempered distribution T' is supported in x =0 if and only
if T is a polynomial.
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Proof. By Lemma [2.§] there exists N so that

ITfl<c sup supl|z?0®f(x)|.
la|+BI<N @

We fix a function n supported on Bj(0), identically 1 in B%(O). Then

Tf=TMf)+T(f—nf)

where the second term vanishes since the intersection of the supports is
empty. Thus
ITf| < c sup sup [0°f(z)].
la|<N |z|<1
Now suppose that 0*f(0) = 0 for |a] < N and we show Tf = 0. Indeed,
for any |a| < N and any ¢ > 0, using that the product is supported in B.(0)
and Taylor’s formula for f

0%n(z/e) fl =1 Y} co,0"nlx/e)" f(x)]

B+y=a
< ¢ 2 e Pl sup Oz V1Pl < NIl
Bty=a lol<e

we obtain by letting ¢ — 0

Tf=0.

Now let 1
Ao = aT(n:p ).

Then, for f e S

aaf « (67

Tf=T{f- > ()27 | + D aad® £(0).
la|l<N la|<N

The first term vanishes by the previous argument and we arrive at

Tf= 3 aadf(0)= Y} aa(=1)"(200)(f)

la|l<N lal<N
and )
T(k) = 2m)™ ' ao(—1)(—ik)*.
|a|<N
The opposite direction is immediate. O
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2.5 Periodic distributions

Definition 2.19. Let Z < R? be a lattice (i.e. a discrete group whose span
is RY). A (tempered) distribution T is called Z periodic, if

T(¢) = T(o(. + h))

for every h e Z.

We define the dual lattice
Z*={keR: k-he2nZ forallhe Z}.

Lemma 2.20. T is Z periodic if and only sz 15 a sum of Dirac measures
mn Z*.

Proof. Suppose that T is Z periodic. Then

T(¢) = T(¢(- + h))

hence

~

T(¢) =T(9) = T(d(. + h)) = T(e ™9
and
T((1—e™)g) =0

for all h € Z. Let h; € Z be a basis. If o ¢ Z* we can define h; so that
hj-xo #0,ie. h;-xo¢ 2nZ. Let ¢ be supported in a small neighborhood of
7o so that ¢/(1 — €™) is smooth and bounded. Then

To=T((1—e"")(/(1—e"M))) =0.

Thus T is supported in Z*.

A linear change of coordinates maps Z to 27Z? and Z* to Z¢. It suffices
to consider this situation. It also suffices to prove that nT is a Dirac measure
for n € Cf° supported in a ball of radius 1/2 around 0. We pick n with
n(0) = 1. Suppose f € S vanishes at x = 0. By the fundamental theorem of
calculus

f(z) = f(0) +/ x - Df(tx)dt
0
and hence

d ' T 1
wfte) =0 20— [ astaar

J=1
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and

(1—€e")f;) =0

HM&

where we combined the obvious terms into f;. For general f we obtain

~

nL(f) =0T (f — f(0)n) + FO)T(n) = T(n*)do(f).
0

A special case is T = Y}, 7402z, It is periodic and a sum of Dirac
measures. Thus exists ¢ such that

Lemma 2.21 (Poisson summation formula). Let f € S. Then

> fw) =) fk). (2.9)

ye2nZ4d kezd

Proof. Let

keZd
with
o — (27) / Fla)eodz — (2x) 4 [ f@)e®da — f(k)
(0 271')d R4
Thus R
D) =F0)= > ar= )] fk)
yemrzd keZd keZd
]
[28.04.2017]
[03.05.2017]
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3 Selfadjoint operators and unitary groups

The formulation of quantum mechanics uses unbounded selfadjoint operators
on a Hilbert space H. We want to describe systems with a number of symme-
tries: Translation symmetry and rotation symmetry for free particles, inner
symmetries for example between proton and neutron for the strong force,
or spin, the symmetry between identical particles. It is a basic principle of
quantum mechanics that symmetries act by unitary operators on the Hilbert
space.
The simplest example is the translation group

h — U(h) where he R?,  U(h): H — H,

with the properties
U(hy + hy) = U(h1)U(h2)

U0) = 1y
(U(R)* = U(=h).

For every ¢ € H the map
h—U(h)¢

is continuous. Suppose that d = 1 and h € R. Stone’s theorem gives a one to
one correspondence between one parameter unitary groups and unbounded
self adjoint operators, which for matrices is given by

d

—U = —1AU

dt
where A is selfadjoint operator. If we take the standard translation repre-
sentation

Uh)f = flz—h)

then
d d 1

i%U(h)f = —i%U(h)f = (;@:)U(h)f.

After a Fourier transform %(92 becomes the multiplication by k. The spectral
theorem says that selfadjoint operators are unitarily equivalent to a multi-
plication operator in the same fashion as above.

It is a basic principle of quantum mechanics that ’observables’ are selfad-
joint operators which play a central role in the formalism and interpretation
of quantum mechanics. One of the most basic one is called 'z’. In a trans-
lation invariant set there is the group of translations U(h), with the obvious
action on x:

U(—h)zU(h) = = + hl.
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The Stone-von Neumann theorem classifies Hilbert spaces with such an ac-
tion.

A particular case is the time translation. Stone’s theorem relates it to a
selfadjoint operator, which is called Hamilton operator.

One of the corner stones of quantum mechanics is a recipe how to con-
struct Hamilton operators for the hull of atoms, and more complicated ob-
jects. On the side of mathematics this is the area of quantization, pseudod-
ifferential operators and semiclassical analysis.

We will be brief on this recipe, and postpone its discussion and the dis-
cussion of symmetry groups to later chapters. This section is devoted to
Stone’s theorem, the spectrum and diagonalization of selfadjoint operators
and unbounded operators. This will allow us to discuss the commutation
relation

(2, =0, ] = 101,

its relation to the Heisenberg group and Heisenberg’s uncertainty relation.
We will briefly touch upon the question of measurements and the interpre-
tation of quantum mechanics.

3.1 The spectrum of continuous operators

Let X, Y be complex Banach spaces and L(X,Y’) be the space of continuous
linear operators from X to Y with norm

1T x—y = sup [Ty
[zl x <1

Definition 3.1. Let T' € L(X,X). The resolvent set p(T') consists of all
A € C for which T — A1 is invertible. The complement is the spectrum o(T).

Lemma 3.2. Suppose that T € L(X,Y) is invertible. Then T—S is invertible
if |S|xov|T Hy—ox < 1. The map T — T~ is analytic in the sense that
we can expand it locally into a power series.

Proof. We observe that, since [AB|x_x < |A|x-x]|B|x-xwehave [|A7|x_x <
IA|%_, - Moreover

(T —-8S)T7* i(STl)j =1y

and
0

T (ST)(T - 8) = 1x.

7=0

23 [JuLy 26, 2017]



Convergence is immediate and hence
w .
(T—8)" =T Y (ST'Y
j=0

which is the desired power series.
m

The theorem of the inverse operator, a consequence of the open mapping
principle implies

Lemma 3.3. T € L(X,Y) is invertible if
1. The null space is trivial
2. The range is closed
3. The closure of the range is Y.
The dual operator 7" : Y* — X* is defined by
T'y*(x) = y*(Tx).
It is invertible if and only if 7" is invertible.

Lemma 3.4. The following statements are always true.
1. o(T) < Bg(0) where R = |T||x-x-
2. o(T) is compact and nonempty.

3. o(T) = o(T").

4. Let p be a polynomial. Then

5. o(T) < B,(0) where

r = liminf ||T"H§(/ZX
n—0o0

o(T) is not contained in any smaller ball centers at 0.
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Proof. Since
0
(T = 2)(D (2 — 2) (T — 2) 77" =1
=0
if T, is invertible and |z — zg| small we obtain
o(T) 22z — 2*(T — 2)"'w

is holomorphic for all z € X and 2* € X*. Let |A| > R. Then

(T—X) D ATV = —1x = > A7'T(T - ).

Jj=0 J=0

The sum converges since |A| > |T|x_x by assumption.

The set p(T') is open by Lemma hence o(T) is closed and bounded
and hence compact. It is nonempty by the last part of the theorem.

We know from functional analysis that 7' is invertible if and only if 7" is
invertible. This implies the third statement.

Suppose that A ¢ p(c(7')). By the fundamental theorem of algebra

p(z) = A=co [ [(z = =)

with z; € p(T"). Thus T'— z; is invertible, and hence A € p(p(7")). Now assume
that A € p(o(7)). Then one of the z; is in o(7"). We assume that it is the
first one. Either 7' — z; has a null space, and then p(T") — A has a null space,
or the range is not the full space, in which case the range of p(T") — A is not
the full space. Thus p(T) — A is not invertible and A € o(p(T)).

Since

(0(T)) = o(T7) < Byrs(0)

we obtain

o(T) = B,(0)

with r as in the lemma. Now suppose that

a(T) < B,(0).
We will prove that then a > r, or more precisely

lim sup |7 < a. (3.1)

n—0o0

Let z* € X* and z € X. The function

z—a*(1—2T)'zeC
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is holomorphic in By /,(0) and, if z is small, then

o0
(1—27)" Z

by Part 1. Thus, for every ’ < 1/a, by the residue theorem

. 1 .
¥ Tr = e v*27 N1 = 2T) tadz.
T JoB,,(0)

This is bounded by ¢ (r") ™7~ |z*| x| z|x and hence
1T |xox < cu(r) 7Y W < 1/a,

which implies (3.1]).
Similarly we prove that o(T') is not empty. Suppose it is empty. Then,
by Lemma as in part 1,

f(z) =a"(T = 2)""a

is holomorphic in C. It is bounded and decays to zero as |z| — o by the

proof of part 1. Hence
(T —2)'e =0

for all z*, x and z (this follows from the residue theorem by
2mif(z0) = lim Malz =0.)
R—o0 dBR(20) Z— 2
Thus (T — 2)~! = 0 which is absurd and a contradiction. O

[03.05.2017]
[05.05.2017]

3.2 The spectrum of normal operators I

In this section we only consider separable Hilbert spaces H with an inner
product {.,.», which we assume to be complex linear in the first variable.
The norm is given by |z|% = {(z, z).

Definition 3.5. Let T' € L(Hy, Hs). Its adjoint T* € L(Hs, Hy) is defined by
<T$, y>H2 = <£If, T*y>H1'

26 [JuLy 26, 2017]



We say that T € L(H, H) is normal if
T*T = TT*,

selfadjoint if T = T*, positive semidefinite if in addition

(Txz,x) =0

and positive definite if there exists 6 > 0 so that in addition

(T, 2) > 0z
Lemma 3.6. Suppose that T is normal. Then
17— = T3

As a consequence

sup{[A[ : A e o(T)} = [T

Proof.

|Tf7 =<TF.TF)
=/, T°Tf)

<|T*Tla—ul f 1
and hence (obviously | T*T| < |T|?)

IT*T| e = T3 -

Then
|72 fl3 =<T*f,T*f)
={Tf,T*T*f)
=(Tf, TT*Tf)
={T*Tf,T*Tf)
= |T*Tf|%
and hence

|72 = |77 = |7)*

if T is normal. Similarly |7%*| = |T%|? and |T'|*"
there exist j,n such that 7 + &£ = 2™ and hence

= |T|*". Since for any k

|71 = 17| < 1T T*) < ITPIT)* = 7)™,

all inequalities above have to be equalities and hence |T%| = |T|*. The last

statement follows now from Proposition [3.4]
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Lemma 3.7. Let T be normal.
1. T is selfadjoint if and only if o(T) < R.
2. T is positive semidefinite iff o(T) < [0, 0).
3. T is positive definite iff o(T) < (0,0).
Proof. Let T be selfadjoint and A = 1 + iT". Then
(2, y) = (Az,y) = (z,y) + Tx,y)

is a continuous bilinear form, linear in the first argument, and antilinear in
the second. Moreover, since by selfadjoint property (T'z,z) = {(x,Tx) =
(Tz,z) e R, we have

Re( Az, x) = |z||%.

By the Lemma of Lax Milgram A is invertible. For any A = a+ b with b # 0,
we know that the operator b~!(T — a) is selfadjoint and the operator

—ib ' AN =T)=1+ib" (T — a)

is invertible and hence A € p(T"). Therefore o(T") < R.
Now let T be normal and o(7) < R. Then for all ¢ € R\{0}, T" — it is
invertible with o (T — it) < (R —it). We claim that

o((T —it)™") = (o(T) — it) . (3.2)

This follows from the trivial observation that if 7" and T — \ are invertible
with A # 0, then 7' — A~! is invertible since A\T(T~! — A™') = A — T and
hence

A=T)y"A\NT(T' = A H=1= (T XH\T\-T)"".

Moreover T—! is normal if T is normal and invertible.

Using the claim we get by Lemma
(T —it)™'z| < [t~ [2], that is, (T — it)z| > |t]]=]
and hence
0 < (T —it)z|]* — 2|z|* = |Tx|* — 2t Im(T'z, x)
for all ¢. Thus Im{(Tz, z) = 0 and hence

(Tz,z)={x,Tx)eR.
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Then

(T - %(T T, @) = 0

for all z where T' + T* is selfadjoint. Similarly S = (T — T*) is selfadjoint
and it satisfies

(Sz,x)y =0
for all z € H. We claim that then S = 0 since

(Sz,y) = i<<8(x+y),m+y>—<8(m—y),x—y>> =0

for all z,y € H.

Now suppose that T is positive semidefinite and A < 0. We apply the
same argument to A =T — \.

Suppose that o(T) < [0,00). Then T is selfadjoint by the previous step.
If £ > 0 then in the same ways as above

It +T)x|| = t]z]
and
0<[(t+Dz|® — |z = |Tx|? + 26T, x)

and hence (Tx,x) = 0.
The last statement about positive definite operators follows by adding a

multiplie of the identity from the positive semidefinite case.
]

Lemma 3.8. Let p be a polynomial and T be normal. Then p(T) is normal.
If T is selfadjoint and p is real then p(T) is selfadjoint. If p is real and
nonnegative on o(T) then p(T) is positive semidefinite.

Proof. An easy computation shows that T* is normal if 7', and selfadjoint if
T is selfadjoint. Since o(p(T)) = p(o(T)) the last statement follows from the
previous lemma. O

Theorem 3.9 (Stone-WeierstraB). Let K = R? be compact and f € C(K;R).
Then there exists a sequence of polynomial p, in d variables so that

Hf _pn”Cb(K) — 0.

Theorem 3.10. Let T be selfadjoint with spectrum K = o(T). Then there
1S @ unique 1sometry

¢:C(K;R)> f— f(T)e L(X,X)
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so that the range consists of selfadjoint operators and
¢(x) =T
o(fg) = ¢(f)o(g)-

Moreover

a(¢(f)) = f(o(T)).

This theorem defines a so-called operator calculus which may be consid-
ered as 'spectral theorem’ resp. a diagonalization of T'. We can easily extend
the theorem to complex valued functions by splitting real and imaginary
parts. We will write

F(T) = o(f).
Proof. For monomials we must have
o) = T"

if there is a map with these properties. Hence we define ¢ on polynomials by

which is clearly selfadjoint and satisfies all the properties for real polynomials.
Let f e C(K;R) and p, a sequence of polynomials converging uniform in K
to f. Then

0(¢(Pn — Pm)) = o(Pu(T) — pu(T)).
By Lemma [3.6]

[6(pn) = d(om)|Lixx) = (Pn = Pm)(T)]
sup{[A[ : A € o((pn — P ) (1))}
< sup |pn(y) - pm(y>’ — 0.

yeK
We define
F(T) =l (7).
Uniqueness and the properties are immediate consequences. O

It is not hard to extend this theorem to normal operators. However, we
will obtain a more general result later anyhow.

[05.05.2017]
[10.05.2017]
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3.3 Orthogonal polynomials. Favard’s theorem

We will attempt to obtain a more precise ’spectral’ theorem, for which we
will use the theory of orthonormal polynomials, which is interesting in its
own right.

Let u be a Radon measure on R with |z|™ € L?(u) for all N and p(R) = 1.
We call p trivial if it is a finite sum of Dirac measures. In the sequel we assume
that p is nontrivial. Notice that

k—1 '
= Yla;a?, i LP(p)
7=0

for some a; if and only if p is trivial - if the identity holds in L?*(p) then
it holds almost everywhere. Then for finitely many points one obtains a
Vandermonde matrix applied to the vectors ((a;), 1), which can only be zero
if there are less than k points.

We use the Gram-Schmidt procedure to orthogonalize the sequence x
and obtain the monic orthogonal polynomials

n—I1
P,(x) =2" + 2 ajxj,
j=0

k

Po—l,Pl—x—/xd,u,....
R

and the orthonormal polynomials

P = |Pal 72 P

We define P
o = WPl o
1 Po122 ()
so that .
| Bl = Ha]
j=1

Lemma 3.11. There exist b,, so that
2P, (1) = Poy1(2) + by Po(7) + a2 P, 1 ()
with b, € R. Then

Ipn(x) = An+1Pn+1 + bn+1pn + AnPn—1- (33)
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Proof. By construction the P, are orthogonal to all polynomials of degree
<n. If j <n—1then

(P wPy = @Py, Py = 0
and hence there exist «, § and v so that

TP (7) = aPyi1(x) + BP(x) + vPo1(2).
Sicne x P, and P,,; are monic we have o« = 1. In particular

<$Pn, Pn+1> = ||Pn+1H2

and
v = &P, Pa- 1)/ | Paa|? = | Bal?/ |1 Paa|* = ap-
Thus
B = (xPu, P)/|Pal® := bos1 € R
and finally
xpn(z) = %j”pm + bpsapn(T) + a ‘f;nﬁ’pn—l

which gives (3.3)). O
The Jacobi matrix is defined to be
b1 aq 0 0

ay bg a9 0
0 Qo b3 as

Lemma 3.12. Suppose that p is supported on a compact interval. Let
n = 2sup |a,| + sup |b,|.
Then supp v < [—n,n] and, if supp p < [—R, R] then n < 3R.

Proof. The span of the p,(z) is dense in L?(u) by the theorem of Stone-
Weierstrass and the density of continuous functions in L?(u) since p is a
compactly supported Radon measure.

The multiplication by x can be expressed through the matrix JJ. In par-
ticular, if f = Z;’;l pj—1(z) then

o0
wf =) (a;p; +bipj1 + a; 1p;2)
j=1
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hence
|z fllz2 ) < Il lz2 -

In particular
‘/ w”dﬂ‘ < [ z2gy < n™
R

But this implies that g is supported in [—7n,n]. Now suppose that p is
supported in [—R, R]. By construction

bn+1 = <J7pnapn>7 an+1 = <xpn;pn+1>
and hence 0 < a, < R, |b,| < R. O

Theorem 3.13 (Favard’s theorem). Let (a,) be a nonnegative bounded se-
quence, and let (b,) be a bounded sequence. Then there exists a unique prob-
ability measure so that (a,,b,) are the Jacobi parameters, i.e. entries of its
Jacobi matriz.

Proof. We first prove uniqueness. Let p and v be such probability measures.

Two measures are equal if
[ tin= [ sav

for every continuous function. By the Stone-Weierstrafl approximation the-
orem polynomials are dense in the continuous functions and hence it

suffices to prove
/a:”du = /x"dl/. (3.4)

This holds for n = 0 and suppose this also holds for n < k — 1. Since the a,
and b, determine P by xP,_1 — by Py_1 — ai_ Py_2, we have

/Pkdu—/PdeZO
by the orthogonality to 1.

Existence is more involved. Let .J,, be the upper left n x n block of J and
let P, be the monic polynomial corresponding to .J,,.

Lemma 3.14. 1. All roots of P, are real and simple.

2. The roots of P, and P,_1 are interlaced.
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Proof. If P,(y) = 0 then
Puia(y) +apPoa(y) =0

and P,11(y) and P,_;(y) have opposite signs. Now we do induction on n.
Suppose the lemma holds for P, for k < n. Let y; be the ordered zeros of P,.
Then P,_;(y;) has a different sign at two adjacent zeros of P,, and the same
is true for P, ;. Checking x — 400 one sees that P,,; has one zero in each
of the intervals (—o0,41), (y1,92) ... (Yn,0). Hence it has n + 1 real zeros
which have to be simple since the degree of P, is n+ 1, and interlaced. [

Theorem 3.15. Let J,,, P} and p} be as above.

1. pa(y;) = 0 iff y; is an eigenvalue of J,. Then the vector

(3.5)

Pr-1(Y5) )
) 1<k<n

(i () 2)”

is the eigenvector of J,, associated to the eigenvalue y;:

& = (@hanen = (

(Jn - y])¢] = 0.

2. Forj#k Y @6k =0.

m=1
8. Let pp = 335, |¢{|25yj. Then J,, is the Jacobi matriz of fu,.
4. det(z — J,) = Py(2).
Proof. Equation (3.3) implies that

Jn (pm—l (yj))1<m<n =Yj (pm—l (yj))lémSn

for all zeros y; of p,,. Since p, has n simple zeros, the y;, 1 < j < n are simple
cigenvalues of n x n matrix J, with the eigenvectors ¢’/ of the theorem.
Since J,, is real and symmetric and hence selfadjoint, the eigenvectors are

orthogonal and real: §;, = (¢7, 9"y = 3" | dhok,.
By (3.5) , _
O = (Pm—1(y;)) 1
hence

Ok =Y Ot = > A D1 ()1 ().
m=1 m=1
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We read this as saying that a product of two n x n matrices is the identity.
Then also

5jk = Z @¢Tpk—1(ym)pj—1(ym) = /pj—lpk—1d,un-
m=1

Thus the (p;) are orthonormal polynomials with respect to fi,.
Statement [I] implies

det(z — J,) = P,(z)

since both polynomials have the same zeros and both are monic.
O

[10.05.2017]
[12.05.2017]

We continue with the proof of Theorem [3.13] Now let pu,, be the measures

of Theorem [3.15l Then
/1dun = /1d,um =1

/pjdun = /pjdum =0

for 1 < j <n < m. Thus [z'du, is independent of n provided n > [ and
the limit

and

lim [ 2’du,
n—aoo

exists and defines an element in the dual space of Cy([—7,7]), and hence a
unique measure with the desired properties. O

3.4 The spectrum of selfadjoint operators: the second
version

Let H be an infinite dimensional Hilbert space and T € L(H) be selfadjoint.
We call ¢ € H with |¢| = 1 cyclic if the span of (T7¢)o<; is dense in H.

Theorem 3.16. Let T be selfadjoint and ¢ be cyclic. Then there exists a
unique compactly supported probability measure g on R and a unique unitary
map U : L?(u) — H so that

TUf =Uxf

and
Ul = ¢.
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Proof. We apply the orthogonalization procedure to T"¢ (linearly indepen-
dent since ¢ is cyclic, and the dimension is ) to obtain ®,, in the form

n—1
O, =T+ Y ¢;T'¢
j=0

so that

Then T'®y is in the span of (®,,)m<ks1. In particular
(D), TPy =0

if | > k+1. Thus |j —m| > 1 implies (®;, ®,,» = 0 and the (infinite) matrix
of T" in this basis is tridiagonal. We write

T(I)n = aq)n-H + /Bq)n + 7¢n—1

and define
an = | Pn| /| Pr-1ll-

Let ¢, = ®,,/|®,|. Then

T¢n = an+1¢n+1 + bn+1¢n + an(bnfl (36)

and
bn+1 = <T¢m ¢n>7 Upt1 = <T¢n7 ¢n+1>~

Both are bounded by |T'|. We apply Favard’s theorem: There exists a unique
measure p and a sequence of orthonormal polynomials analogous to the ¢,.

We define U by

Upn = ¢n
This is clearly unitary, Uz" = ®" = T"¢ for 1 < n and hence U(zf) =
TUf. O

Theorem 3.17. Let T be selfadjoint. There exists measure on R x N sup-
ported on K xN for some K = o(T) and a unitary map U € L(L*(RxN); H)
so that

Uxf =TUf.

Proof. We claim that there exists a finite or infinite ONS sequence (¢,,) so
that

(TP, by # 0
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unless m = n and the span of (T*¢,,)m is dense in H. We then apply
the previous theorem for all H,, = span{T*¢,, : k = 0}. We assume that all
H,, are infinite dimensional. The arguments are easily modified in the finite

dimensional case. Since T': H,, — H,, we obtain the theorem.
Let (¢;) be a basis. We choose ¢; = ¢; and

H, = span{T*¢, : k > 0}.

Let (ﬁj be the first j so that gz;j ¢ H,. We project it to Hi- and normalize it
and denote it by ¢5. We obtain the H,, recursively. O

It is not hard to see that the spectrum of a multiplication operator by a
continuous function f on L?*(u) is the image of the support of p under f.

Corollary 3.18 (Borel functional calculus). Let T' be selfadjoint, K its spec-
trum. Let B(K') be the set of bounded Borel measurable functions on K with
the standard norm. Then there is a unique algebra morphism

U : B(K) — L(H)

so that
U(z") =1"

for 0 < n.

Proof. This is trivial for a multiplication operator. By Theorem [3.17] it suf-
fices to consider a multiplication operator. We postpone the proof of unique-
ness (it follows from the argument in Lemma below). O

Definition 3.19. Let T be selfadjoint. We define the spectral resolution as
the family of projection operators

P(t) = \D(X(foo,t]) = X(foo,t](T)'
Then P(t) =0if t < —||T|, P(t) =1ift > |T| and
P(t)P(s) = P(min{t, s})

Moreover P*(t) = P(t) and the P(t) are selfadjoint and positive semidefinite.

37 [JuLy 26, 2017]



3.5 The spectrum of normal operators II

Let T}, j = 1,--- , N be a set of commuting selfadjoint operators:
L.T; - T/T.
We call ¢ € H cyclic, if |¢| = 1 and the span of
(TF0)ik

is dense in H.

Theorem 3.20. Suppose that ¢ is cyclic. Then there exists a unique proba-
bility measure p on

X 1T 17311

and a unitary map U : L*(n) — H so that
T,Uh = Uz;h, Ul =6,

Proof. As in the single operator case uniqueness of y follows from

0.1°6) = [ a*dye

Lemma 3.21. Let T} and Ty be commuting bounded selfadjoint operators
and let f, g be bounded Borel functions. Then f(Ty) and g(T) commute.

We use the notation
[T, T5]) = Th T, — ToTh
for the commutator.

Proof. This is clear for polynomials, hence also for continuous functions f
and g. Let f and g be Borel measurable and f,, g, continuous, uniformly
bounded, with f,, — f and ¢, — ¢, pur, and g, almost everywhere with the
measures of Theorem [3.17} Then for all h e L?(ug,)

folh = fh
in L?(ur,) by the convergence theorem of Lebesgue. Thus

0= [fn(Tl):gm(T2>]¢ - [f(T1)79m(T2)]w as n — o
for all ¢ € H and

0= [f(Th), gm(T2)] — [f(T1), 9(T2) ]9 as m — o

by the same argument. O
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[12.05.2017]
[19.05.2017]

We define a measure p on rectangles R = X;-V:l(xj, Y5l

=z

u(R) = (&, | [ Xtoy1(TH) 6.

j=1

Then by Corollary |3.18, u is supported on ijzl[—HTjH, |T5]1]-

Lemma 3.22. 0 < u(R) < 1. It defines an outer measure which coincides
with p on rectangles.

Proof. By Lemma , the operators x(q,,,;)(7;) commute. Moreover the
operator X(s,,](7j) is positive semidefinite, and thus 0 < u(R). If R < R
then pu(R) < u(R') and u(RY) = 1. As for the Lebesgue measure this defines
a premeasure on finite union of cubes, an outer measure on all sets, and a
measure on Borel sets, which coincides with p on rectangles and we denote
this outer measure still by . O

We define U by
N N
U H X(aj7bj] (xj> = H X(ajvbj] (7})(;5
j=1 J=1

which extends to a linear and unitary map from L?(u) to H. By an approx-
imation by step functions

Ur; =T;¢
and hence Uz® = T“¢ for every multiindex. This implies
Ulz;f) = T;U(f)

for all f e L*(u).
[

Theorem 3.23 (Normal operators). Let T' be normal operator. Then there
exrists a measure [L On B\(\CTH (0) x N and a unitary operator U so that

Uz = TUY

Uz = T*U.
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Proof. We write T = T + iTp with Ty = $(T + T*), To = (T — T*) being
selfadjoint operators. We have (T} + iTy)* = T} —iT5 and
T? + T2 — [T, Ty] = (T1 + iTy) (T, —iTy) = TT*
T*T = (Ty — iT)(T) +iTy) = T? + Ty + i[Ty, T3]
Thus T is normal iff 7} and 75 commute. It suffices to consider the case when

there is a cyclic ¢. Then there is a unique measure p with compact support
on R? and a unitary map U : L?*(u) — H so that

Ul = (b, U(xlf) = TlUf, U(I'Qf) = TQUf

Thus

U((z1 +ixe)f) = (Th +iT)Uf =TUf
and

U((xy —ixe) f) = (T1 —iL)Uf =T*Uf.
Again

supp it = 0(M) = o(T') = Byr(0) = C.

3.6 Unbounded selfadjoint operators
Given h € R we define S(h) € L(L*(R)) by
S (@) = f(z—h), VfeLA(R).
The operator S is unitary and satisfies
S(0)=1,  S(h +hs) = S(h)S(ha)  for hy,hs € R.
It is not difficult to see that whenever h # 0
IS(h) = S(O0)] 2z = 2

and hence h — S(h) € L(L*(R)) is not continuous in the operator norm. We
call amap h — T'(h) : R — L(H) strongly continuous if

h—T(h)¢

is continuous from R to H for every ¢ € H. It is not hard to see that
h — S(h) is strongly continuous, by use of the density of the compacted
supported continuous functions in L*(R).

The ‘generator’ (to be defined later) of the translations is —id,,, which is
not a bounded operator. We want to establish a theory which says that every
(one parameter) unitary group of operators (assuming strong continuity) has
a selfadjoint generator.
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Definition 3.24. A densely defined (or unbounded) operator T on a Hilbert
H is a pair consisting of a dense subspace D(T') and a linear map T : D(T) —
H. Its graph

I(T) = {(z,Tx) € D(T) x H}

s a subspace of H x H.
We write S < T if D(S) < D(T) and T|ps) = S.
We call it symmetric if

(T, vy = (&, TY)
for all ¢,p € D(T). We call it closed if T'(T) is closed and closable if T(T)

1s the graph of an operator which is called closure.
Let T be an unbounded operator. Its adjoint T is defined by

(To, ) ={p, T*Y), Vo,pe H
with
D(T*) = {n: there exists ¢ so that [{Té,n)| < c| 6| for all ¢ € D(A)}.
We call T selfadjoint if T* =T

Lemma 3.25. Let p be a Radon measure on R?, F a Borel measurable
function. We define

D)= {1+ [ FUfPdp < 4},
Rd
and
Tf=Ff VfeD().

Then T is selfadjoint and closed.

Proof. We claim that the graph is closed: Let f, € D(T) so that f, and
Ff, are Cauchy sequences and f = lim f,. Then Ff, € L? and Ff =

n—aoo

lim,, ., F'f,, € L? and hence f € D(T).
If there exists ¢ such that

/ F¢77du‘ < el
Rd

for all ¢ with F¢ € L? then Fnp € L? and hence D(T*) = D(T). Symmetry
is obvious. O
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Lemma 3.26. Suppose that T is a densely defined operator on H and that
for some € > 0

|T| = €[]
Then T s closed iff the range is closed.

Proof. Exercise. m

Definition 3.27. Let T be a closed operator. We define p(T') as the set of all
z for which there exists a bounded operator S with range contained in D(T)
so that

(T —2)S¢p = ¢ for all p € H

and

S(T—2)p=0¢ for all p € D(T).
The complement o(T) = C\p(T') is called spectrum.

[19.05.2017]
24.05.2017]

Let T be symmetric. For z € C\R we define the deficiency index
d(z) = dim(Ran(T — 2))*" = dim ker(T* — 2).

Example: H = L*([0,1]), D(T) = H}([0,1]), T = —i0,. This operator
is symmetric. The adjoint operator T* has domain H'([0,1]). To determine
d(i) we search for functions in D(T*) which satisfy

¢ € ker(T™* + i) i.e. —id,00 = —ig.
This is ¢ = ce® € H([0, 1]) which is not in H} ([0, 1]) and d(i) = 1.

Theorem 3.28. Let T' be closed and symmetric. Then there are two non-
negative integers d4 so that d(z) = dy for £Imz > 0. If (T'¢,¢) = 0 for
¢ € D(T) then also d, = d_.

Proof. Let Imz > 0. We will show that there exists a ball around z so that
d(z) is constant on that ball. Together with a similar argument for 7" > 0
this completes the proof.

Suppose that V, W are closed subspaces of H. If V.n W = {0} then

dimV < dim W+,

We apply this with W = Ran(T — z) and V' = ker(T* — w) with |z — w| <
Im z/2. Tt suffices to prove that V. n W = {0}. Let n € V. n W. There exists
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¢ € D(T) so that n = (T'— z)¢ and (T* — w)n = 0 and hence (T* — z)n =
(w — Z)n. Thus

[nll* = (T = 2)6,m) = Lo, (T = 2)y = (w — 2){, 1)

and hence | |
w—z
Inl* < |w — z||n]¢] < WHHHQ,

thus 7 = 0. Here we use that

Im{(T — 2), ¢) = —Im 2|

and hence
In| = (T - 2)¢| = |Im z||¢||

for ¢ € D(T'). The second part is similar. O

Theorem 3.29. Let T be a closed symmetric operator. Then T is selfadjoint
iffdy =d_ = 0.

Proof. Suppose first that T = T™*. If (T* — Z)¢ = 0 with Im z # 0 then
26 = (6, T*¢) = (T$,6) e R

which implies dy = 0.
Now assume that dy = 0. Given ¢ € D(T*) we find n € D(T) with

(T +i)n = (T* +1i)o.
Since T'c T*
(T +i)n—0) = (T +i)n—(T" +i)p =0

and n — ¢ € ker(T™* + 7) and hence ¢ =ne D(T). Thus D(T) = D(T*) and
T =T [l

Definition 3.30. Let T be closed and symmetric. The Cayley transform s

U = { (T —4)(T +i)" "% if ¢ € Ran(T + 1)
0 if v € Ran(T + i)t = ker(T* — i)

Theorem 3.31. Suppose that T is a closed symmetric operator and U its
Cayley transform.

o U is an isometry from Ran(T + i) to Ran(T —1).
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o T is selfadjoint iff U is unitary.
o ¢ is cyclic for U if and only if it is cyclic for (T +1i)~'.
o For U unitary, Up = ¢ has only trivial solutions.

Proof. 1f (T + )¢ = 1 then

[ = (T + )¢l = (T = i) (T + i)'

since
(T +9)¢|* = |T¢|* + |¢]* = (T —i)o|.

Thus U|gan(r+i) is an isometry to Ran(7" —1). Surjectivity holds since we can
argue in the same fashion with (7" + 4)(T — 7).

U is unitary if T is selfadjoint.

The third part follows from

U=1-2i(T+1i) "

If Up = ¢ then [|Uo| = |¢|, ¢ € Ran(T + i), and U*¢ = U*U¢ = ¢. For
ne D(T)

0= LT+ i), (U =1)¢) = (U(T +14) = (T +14))n,¢)
= (T =2) = (T +2))n, ) = =2in, ¢

and hence ¢ € D(T)*+ = {0}. O

Theorem 3.32 (Spectral theorem for unbounded selfadjoint operators).
Suppose that T is a unbounded selfadjoint operator on H. Then there is
a Radon measure p on R x N and an isometry

U:L*(n) — H,

so that U : D(M,) — D(T) is bijective and that if xf € L*(u) then U(f) €
D(T) and
Uz f) =TU(f).

Proof. Let V be the Cayley transform of T". It is unitary and hence bounded
and normal. By Theorem there is a Radon measure i on C x N and a
unitary map
U:L*u) — H
so that

Uxf =VUf, Uzf=V*Uf.
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Since V' is unitary, its spectrum is contained in the unit circle and hence the
support of /i is contained in the unit circle with ({1} x N) = 0.

Let ¢(z) = i1== so that ¢(z) € Rif |z = 1, z # 1. The multiplier
operator My defines a selfadjoint operator on L?(ji) with dense domain since

i({1} x N) = 0. Let f e D(M,) and
§=o(=)f =i

with g € L?(f1). Let ¢ = Uf € Handn = Uj e H. Since i(142)f = (1—2)g,
then

i1+ V)e=iU((1+2)f) =U((1=2)3) = (1=V)n.
We recall that
V=1-2(T+4)"

and hence

(L=V)p+ 1+ V)p) =i(T+i) o+ (T+4i) 'n

(T +1i)p=1ip+n

Ty =n.
We may reverse the direction of the argument and obtain U : D(M,) — D(T)
via f — ¢ is bijective.
We define
p(l > {3}) = p(o(I) x {5}), IT<R,
with ¢(z) = i—jrz such that |(z)| = 1 and ¢(x) # 1 if z € R. This defines a
unitary map U* : L?(u) — L?(f1) by

U(f(x,4)) = f(2.]) = f(

Hence U : D(M,) — D(M,) is bijective and for any f e D(M,)
I+z, 1+2z ;
UM, f) = i {5, ) = Myf = MU,

We define the unitary map U = UoU* : L?(u) — H so that U : D(M,) —
D(T) is bijective and for any f € D(M,)
UM, f) = UUHM,[)) = UMUf) = UMyf) = U(g) =1
— T =TU(f) = TUU*f) = TUf.

,7) with z = ¢(z).

[]
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3.7 Stone’s theorem

Theorem 3.33 (Stone’s theorem). Let T' be a densely defined selfadjoint
operator with domain D(T). Then there is a unique strongly continuous
unitary group S(t) with t — S(t)¢ differentiable iff ¢ € D(T') and

@S0l = iT0.

This selfadjoint operator T is called the generator of the group S(t) = 7.
Let S(t) be a unitary operator for every t € R which satisfies

S(0)=1, S(s+t)=S(s)S(t)

and for all o, € H
t =S, v)

is measurable. Then S(t) is strongly continuous and there exists a unique
generator of S(t).

Proof. Let T be selfadjoint. By Theorem [3.32]it suffices to consider operators
M, densely defined on L?(u). €"* is a unitary group on L*(u) and

t — eltxg

is differentiable with respect to t if zg € L?(u), i.e. g € D(M,):

itr 1
¢ —ix ast—0
and .
e — 1| |tz
< — = |z

t I
and ¢t~ (e*® —1)g converges to izg for xg € L?(u1) by the theorem of Lebesgue.
[24.05.2017]
126.05.2017]

Let S(t) be a unitary operator as in the theorem. For f € Cj(R) we
define Ay : H — H such that for any ¢,¢ € H

(A, = ¢ / F()S ()it by = / (FOS ()0 dt = / F(t)S(t)dt 6,

where [, f(t)S(t)dt in the last equality is a tempting abuse of notation.
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Let A:= A,,_,.-+. Then noticing S*(t) = S(—t) we have

Xt=0€

0
A*:/ e'S(t)dt,

—00

A+ A* = /e_|t|S(t)dt
R

o9 0
AA* =/ e_tS(t)dt/ e*S(s)ds
0

—00
o0 o0
:/ / e "5S(t — s)dtds
o Jo
—// e T dsS(7)dr
R JO<s,7+s

21/6_7—'5(7')(17' = A*A.
2 Jr

We define V=1 —2A. Then VV* = V*V = 1. Consider

~2(5(1) ~ 1)A =

t (A= S(t)4)

(/OOO e 'S(t)dt — /too 6_5+tS(s)ds)

1 t t_ 1 0
=2¢'— / e *S(s)ds — p / e *S(s)ds
tJo tJo

~+~ | N | DN

hence

lim S5) — 1
t—0 t
for all p € H. V= n implies 0 = (V' + 1)n and hence also n = 0.

Using Theorem we find a Radon measure on S' x N and a unitary
map U : L*(n) — H so that Uzf = VUf and Uzf = V*Uf. We define

the selfadjoint multiplication operator by i1*2 with the domain {f € L*(y) :
T fe L¥(u)}. Let S(t) = UTLS()U : L*(p) — L*(u1). Then

(V-=1¢—(V+1)¢

tim X0 =L 1y 1y

and in the domain we can devide by z — 1 and obtain

S(t) — 1
th(t) 1f—>— + 2
t—0 t 11—z

f.
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Then M;1+: is the generator of S(t) and
T=UMjU""

is the generator of S(t). O

3.8 The Heisenberg group and quantization
3.8.1 The Heisenberg group

Recall that observables in quantum mechanics are selfadjoint operators. The
most important operators are the position operators denoted by (X;) 1 < j <
d where X refers to the jth coordinate. The (¢"Xi) commute and generate
a d dimensional group which we denote by

RYs5¢& — V(€) =X,
There is also a d dimensional translation group U(y) which satisfies
Uy)XU(-y) =X +y

and, equivalently 4 o
U(y)e XU (—y) = e’ve™ X,

We may write these relations as
Uy)V () = eV (§)U(y), (3.7)

which is called the Weyl form of the canonical commutation relations (CCR).

The simplest realization as a group of unitary operators on a Hilbert
space is as follows: We take H = L%*(R%). We define a strongly continuous
homomorphism by

Wy, ) f () =e™e™ 3 @) f (3 4 )
=V S
—eitei S 6T f (g + )

Lemma 3.34. We have

1
W(f,x,t)W(n,y,s) = W(f+7773?+y,t+3+5(95'77—3/'5»-
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Proof.

W (&, 2, )W (n,y, s) =)= 2ETn) () V(U (y)V (n)
:ei(t+s—%£-r—%y'n—y'5)U(J;)U(y)V(OV(n)
it 5@n—r )= 3@ EI U (g 1 )V (€ + 1)

1
=W(E+na+yt+s+ (v n—y-§)

O

One way to describe the structure is by a matrix group. Consider the
matrices

1 =1 29 ... x4 t—%xf

0O 1 0 ... 0 &
Al &)=+ 0 :

0O 0 0 ... 1 &q

0O 0 0 ... 0 1

where

1
A(x, &) Aly,n, s) = A(iﬂ +y,+n,s+t+ 5(95 n—y- 5)) (3.8)

with
A($7 57 t)_l = A(_$7 _57 _t)

and identity A(0,0,0). The matrix group is an affine subspace of the (d +
2) x (d + 2) matrices. It is called Heisenberg group H<.

3.8.2 Quantization

Mathematical quantization provides a map from functions on R?? to operators
on function spaces on R?. This is related to quantization in physics, but we
omit the Planck constant A, which we define to be 1.

Let a € S(RY x R?). If a(x, &) = !*+¥€) then we want to have

W(a) = W(n,y,0) = e 27U (y)V () = €27V () U y).

By the Fourier transform in both the two variables

1 .
P — —in-T+EY) a1 ]
a(z, §) o) /Rded a(n,y)e ydn
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and the Fourier inversion, we define

a"(z, D) f(x) := (2;)51 /Rded a(n, y)W(n,y,0) f(x)dydn, (3.9)

which equals to

a sty f (- y) dydny

de

. / i (—En—y-Etnat y/2)f(x + y)dzdédydn

><]R2d

3

~ (2m)d /]M a(z +y/2,§)e”VE f(x + y)dyds

B (271r)d /Rd @+ 9)/2,0e ™ f(y)dyde,

where we used Fourier inversion for Schwartz functions a(-, &) as follows

n) [ g iy = glo)
RexR

a¥(z, D) is called the Weyl quantization of a.
Lemma 3.35. Suppose that a(x,£) € S(RY). Then

_d
la*(z, D)[us = (2m) "2 ||al L2 (g2a).

Moreover
a’(x, D)b"(x, D) = (atb)*(z, D)

where

Flat)(€.a) = () [ HEDTENale )i, g)dydn

Proof. We calculate

a"(z, D) f(x) = 75, / a((z +y)/2,6)e Y f(y)dedy
(27T) R xRd4
| (3.10)
= Gnin /Rd Faa((x +y)/2,y — x) f(y)dy,
where F5 means the Fourier transform on the second variable, and

ol = |Faalls = [ | Faalla+ 9)/2.y - a)Pdody.
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This implies the first statement.
Then

a’(z, D)b"(x, D) = (27T)2”’/ a(&, 2)b(n, y)W (&, )W (n, y)dzdEdydn

R2d xR2d

= (2m) 7™ / / a(&, 2)b(n, y)e 2@ TIOW (€ 4,z + y)dedEdydn
RZd de

= (2m) ™ / (2m) ¢ / a(€ —n, @ — y)b(n, y)e'z @V EMW (¢ 1) drdedydn,
RQd R2d

which implies the claimed formula. O

[26.05.2017]
31.05.2017

3.9 The Theorem of Stone-von Neumann

Let Ny = {1,...,N}if N < wand Nif N = co. Let u be the Radon measure
on R x Ny which is the Lebesgue measure on R x {j}.

Theorem 3.36 (Stone-von Neumann). Let H be a Hilbert space and V(&)
and U(y), €,y € R? be strongly continuous unitary operators on H satisfying
the Weyl commutation relations. Then there exist N and a unitary map

R:L*RYx Ny)) - H
so that X : H — H 1is unitarily equivalent to the multiplication by x,
R'XR=M,

and
RUWRS = f(- +y).

Proof. Step 1. Claim: There is no nontrivial closed invariant subspace for
L*(RY). Indeed, suppose that there are f, g € S(R?) such that

<W(€7 y)fa g>L2(Rd) =0 (311)
for all £,y € R%. Then

(a"(z,D)f, 9>L2(Rd) =0
for all a € S(R? x R?).
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Suppose that Fra((z+y)/2,y—z) = (27)2g(x)f(y). This can be achieved
by

Foa(z,y) = (2m)2g(x + y/2)f (@ — y/2).
Then by one has

a’(z,D)f = |flz29(x)

and (3.11) implies that f = 0 or g = 0. The claim follows by the density of
S(R?) in L*(RY). .

Step 2. The function e~ "2 is cyclic for the Cayley operators Cj of My,
(which commute). To see this we observe that for every cube I1 x -+ x I

XIpx-- de€—|z|2/2

Njk, since we may express them by
multiplications by characteristic functions in the spectral representation of
the Cj.

Step 3. Let

is in the closure of the span of Cj, ---C

Fea(x,y) = (27r)%e_%|x_y/2|2€—%|x+y/2|2.
Then by view of (3.10))
a’(z, D) f(z) :/ e’%|y‘2f(y)dye*%|x\27

Rd

and hence a*(z, D) is a projector to the span of e~21*". Thus afa = a (see
Lemma .

We now use a*(x, D) to define a projector on H by (3.9). Let Y be its
range in H. It is closed since it is the null space of 1—a"(z, D). We choose an
ONB basis {¢,} in Y and define H; by the closure of the space of W (&, y)¢,.

By the Weyl commutation relations V'(tey) commutes with V' (se;). By
the exercise also the Cayley transforms C}, and their adjoints C} commute.
Thus (Ck + Cf) and 5-(Cj, — Cf) are commuting selfadjoint operators. Let
H; be the span of C{"¢; and (CJ")*¢;. By Theorem m there exist a unique
measure p on (S1)? and unique unitary maps Ry : L*(p) — H; and Ry :
L?(p) — L*(RY) so that

z|2

]?11 = ¢j, ]:221 = (QW)_ge_T,

Ra(="2) = C2(C7)'9,
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Fo(207) = (1 +z‘x>“ <1 —z‘x)ﬁ(%)_ge_@{

1 - 1+
We define R; = R;(Ry)~". Then
Rjx;f = X;R; f
where X is the generator of V(t£;) and also
Riee f — V(¢)R,f.

Step 4. Since

— 2 ey — |2 —_|pl2
e~ eyl /2 — oy —lyl?/2 o~ lal*/2

we obtain

e B = (2m)78 [ F(em )W (€, 0,0)dg 72

R4

and hence with the projector a*(x, D) from above

[U (y)— (2n)% [ Fle=v 2@ wie,o, O)df] a“(z,D) = 0.

Rd

As a consequence

U(y)R;((2r) 2e7172) = U (y);

_d d
2

= (27) F(e v W)@V (&) R ((2m) 2 e *F/?)de

Rd
= Ry(2m) ™ [ Flem=vWPRy(g) et e P 2qe = Rj(2m) 2 lo+vl’/2,
R

We claim that the closure of the space of e~#+4°/2 is L2(R9). After a
Fourier transform this is equivalent to the statement that the closure of span
ei€relo/2 ig [2(R%). In Step 2 we have seen that e /2 is cyclic for the
Cayley transforms and there adjoints. By the proof of Theorem this
implies that e~/ is cyclic for (z; +i)~". But this implies as in Step 3 that
L2(p) is the closure of the span of e®e~1#°/2_ Then

Uy)Rif = Rif(- +y).

Step 5. To conclude we put all the unitary operators R; together.
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3.9.1 The uncertainty principle

It is an immediate consequence of the commutation relations that for ¢ €

S(R?)

d d
02@@[(

and hence

Ulte;)V (se;) — €'V (se;)U(te;)) ] = (i0jx; — 1x;0; — i)

s=t=0
[z’é’j, {L‘k] = 25]k

Theorem 3.37. The following inequality always holds:

2|2 £l 2@y |5 F | 2@y = [ 172 gay-

Proof. We calculate for Schwartz functions and d = 1

|22 = <Fof) =<0, 2l f. ) = (o f), f) = <xaf, [)
= —@f,0f) =<of,xf) <2z f|r2|0f] 2
O

Remark 3.38. We get an identity if 0f + xf = 0 which is equivalent to

12
fzce’%.

4 Schrodinger operators with potentials

4.1 Hamiltonian mechanics and quantum mechanics

The first step in quantum mechanics is to formulate the quantization of
Hamiltonian dynamics. Particularly relevant cases are particles in a potential
field (protons and neutrons in a nucleus), charged particles in an electric
or magnetic field (like electrons in an atom) and systems of many charged
particles (heavy atoms).

The independent variables are the position x and the momentum p where
for a particle of mass m, p = mv where v is the velocity. The Hamilton
function H(z, p) is the energy of a system. The dynmacics are then described
by teh Hamiltonian equations

o0H oH
= P = ——— 4.1
x] apj’ p] axj ( )
[31.05.2017]
[02.06.2017]
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1. For a free particle the Hamiltonian is the kinetic energy sm|v[?

5[p[2. The dynamics is described by the Hamiltonian equations
jjj = 6ij(p,x) }jj = _a:r:jH(pax)-

For a free particle of mass m this gives

. 1 : .
rj=—pp pp=0, ;=0

and
1

zi(t) = x;(0) + —pi(0)t, b (t) = p;(0).

2. A particle trapped by a quadratic potential %|x|2 is described by the
Hamilton function

H(z,p) = —[p* + HJaP.
2m 2

The Hamiltonian equations are

. 1 .
Ty = P Py =~

with the solution

(1) = cos(t/ym)a;(0) + —=sin(t/ym)p;(0)

p;(t) = —v/msin(t/v/m)x;(0) + cos(t//m)p;(0).

3. Two particles of mass m; and msy at position x and y feel the gravita-

tional force vy
F =G _—
(337?4) mimy |$ — y]3
where
G ~ 6.67408(31) x 10" " mP kg~ s72.

Mass is measured in kg, time in seconds sec and length in meter m,
velocity in m/s , acceleration in m/s? and force in Newton N

IN = lkgm/sec’.

The acceleration by the gravitational force of two particles of mass 1kg
and distance 1m is

~ 6.67408(31) x 10~ Mm s72.
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The Hamiltonian for two particles in a gravitational field is

1 1 Gm1m2
H(z,y,p1,p2) = 2—ml!pl\2 + —2!p2\2 -

2m |z =y
and the Hamiltonian equations are
. 1 ) 1
T = —7D1, Yy=—D2
mi meo
. Gmlmg( w Gm1m2( )
=7 —7mU—2) pp=r——7(@—y).
z -yl |z —yf

For a system of n particles of mass m; we obtain the Hamiltonian

n

9 Gmymy,
xﬁpj Z 2m |pj‘ Z |l‘ —r ’
j=1 J j#k J k

The solutions to the two particle system are essentially described by
Kepler’s laws. The n particle system is relevant for the solar system.

. The electrostatic potential is similar to the gravitational potential, but
now with charges replacing mass, and charges may have both signs:
Equal charges repel and different charges attract. The electrostatic
potential is much stronger than the gravitational potential, but matter
tends to be neutral on moderate scales. If ¢ and ¢, are the electric
charges then the force is

_ 1 4192 (€ —y)
dmey |z —y|?

Charges are measured in Coulomb C' and the vacuum permittivity e
is given by

107
367
A natural unit is to measure charge in multiples of the charge of an
electron. Coulomb is often more handy. The charge of an electron is
about 1.602107°C.

CQN—lm—Q

€) =

. Charged particles generate an electric field E : R? — R? and they
feel an electric field. It is measured in newton per coulomb. The
Hamiltonian for a charged particle with charge ¢ in an electric field
with potential U (i.e. E = —VU) is

1
H(x,p) = %|JU|2 + qU(x)

The Hamiltonian equations are derived as above.
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6. d = 3 Moving charged particles generate a magnetic field, and they

feel a magnetic field B : R® — R3. Consider a fixed magnetic field. A
charged particle feels a force, which is proportional to the charge, the
velocity, and strength of the field, and which is perpendicular to both
the field and the velocity. As a consequence a charged particle moves
along spirals in a constant magnetic field. The charged particle feels
the force

q(E+£><B)
m

where F is the electric field and B is the magnetic field. Consider a
constant magnetic field B. There is no source and one always has

V-B=0
and there is a vector potential A for a magnetic field defined on R3,
B =V x A.

The Hamiltonian of a single charged particle is

1
H(z,p) = 5—Ip~ gAP® + qV.

Properties of Hamiltonian dynamics:

1.

The Hamiltonian equations are a system of ordinary differential equa-
tions. Standard theory gives local existence of solutions.

. The Hamiltonian is preserved and has an interpretation as energy.

. The evolution is called Hamiltonian flow. It preserves the symplectic

structure of RY.

4.1.1 Quantization

In quantum physics the time evolution is a unitary evolution, and, if the
system does not depend on time explictly, it is a unitary evolution.

The basic rule of quantum mechanics is that we quantize a classical system

with Hamiltonian H by setting a(x,p) = H(z, hp), and define the Hamilton

operator (again denoted by H, here H)

H =a"(z,D)

and reparametrize time by %t. We obtain

h2
tho, W + —AV =0
2m
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for the free particle and

h2
iho, U + —A\If |x|2\I! =0

for the quantum harmonic oscillator.

4.1.2 Units and scales

The SI (frz. Systéme international d’unités) base units are g, meter m, second
s, Newton N (force), and the current measure in Ampere A and energy in
Joule J.

Planck’s constant is

h = 6.62607004 x 10~**m?kg/s.
The Planck length is

hG
Ip=4/— ~ 1.616229 x 10~**m
C

where G is the gravitation constant and c is the speed of light. Similarly one
may define the Planck time and a Planck mass. These are absolute units,
but they are very small.

What are the scales of the objects of interest? The mass of an electron is

around
me ~ 9.10938356 x 10 kg

and the mass of the neutron is around
m, = 1.675 x 10"*"kg
and the proton mass is around

m, = 1.676219 x 10~*"kg.

The radius of a nucleus is approximately R = 1.25 x 10~5mAs where A is
the number of protons and neutrons.

The Bohr radius of hydrogen is ~ 0.529177 x 1071%m. The nucleus of
an atom contains most of the mass, and a tiny but of the volume. It is a
reasonable approximation to consider a coordinate system so that the nucleus
is at the position x = 0. Its charge ¢ is a multiple n of the charge of an
electron ¢., and the most reasonable system is the one of m electrons. We
obtain the Hamiltonian (neglecting magnetic fields)

H(fﬂjapj)ZLZn:(lpj\z nqe ) qu (4.2)

me “ —I
¢ j=1 j#k k’
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A useful unit is the electron volt: 1leV = 1.6021766208 x 10~ Joule.
Quantum mechanics is most relevant on the scale of atoms, in particular
for the dynamics of the nucleus and the electron. The main force is the
quantized electric (and magnetic) interaction.
The structure of the nucleus is determined by the strong force. In a certain
regime it can be approximated by an harmonic oscillator. Weak interaction
is responsible for decay of particles (mean lifetime of neutron: 881.5 s, decay

into electron and proton).

[02.06.2017]
[14.06.2017]

4.1.3 The Copenhagen interpretation
(Bohr, Heisenberg 1925-1927)

1. Since the evolution is unitary we may restrict ourselves to the evolution
of funtions of norm 1. This represents the state of a system.

2. A measurement corresponds to a selfadjoint operator A, and physically,
to an interaction with a laboratory device. This interaction is not
described by quantum mechanics.

3. The relevant quantity is

(Anp(t), (1))
It gives the expected value of the outcome of an experiment.

4. The measurement changes the state. The wave function collapses. In
the simplest case A is a selfadjoint projection. In that case

(AY, ¥y

gives the probability that the state is the state represented by the
projection. The measurement has a 0/1 outcome (1 means the state
is in the range of the projection, 0 means Ay = 0) , and the wave
function is projected by A if the outcome of outcome is 1, and by 1 — A
if the outcome is 0.

In the double slit experiment the measurement could be: The particle
goes througth the upper slit. The measurement removes the interference
from the observation.
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We observe that
oyl = [ s

and
|01 = (=35, ).
The uncertainty relation says that the product of the expected values is at
least 1 - i.e. if I do many independent measurements of the square of the
position and the square of the momentum then the product of the means is
at least 1 (with h = 1).
Unless we specifically consider physical quantities we will set A = 1.

4.2 The free particle

The Fourier transform transforms the negative of the Laplace operator —A
into the multiplication by |k|?. This is a self-adjoint operator by Lemma
Its spectrum is [0, o), which is immediate from the multiplication property.
On the Fourier side the multiplier

(1g* =2

is bounded on R? for Im z > 0 and defines an operator in L?(R%). For d = 1
and d = 3 you have calculated the fundamental solution, which is the inverse
Fourier transform, for z = 7. The same calculation works for other z as well.
In d = 1 we obtain

1 .
— — ¢l 4.3
o) =~ (43)
since
g/ _ _li iz|z|
2 ||
and »
A z iz]x| )
Y 5 € + 0o
and hence
—g" — 2*g = dp.
For d = 3 it is 1
S e———CL 4.4
9(x) 47riz]x|e (44)
Again one computes
—Ag = Z2g + 50

as in the exercise.
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Lemma 4.1. The operator —A is selfadjoint with
D(=A) = H*(RY) = {f € L*(RY) : &5, f,0;f € L*(R?), 1<j,l<d}.
Its spectrum is [0, ).

Proof. After a Fourier transform we want to determine the domain of the
multiplication by |k|%. It is {f € L*(RY) : |k|?f € L*(R?)}. Then

F(—id;if) = k;f
and
X 1 a1
105 f 2 = |kjfllr2mey < 5“(1 + k%) fllz2 < §(HfHL2 + [Af]L2),

. 1, s 1
105 |z = Tkikf Iz < SUIEE flraes = 5147 e

The spectrum of the multiplication by |k|? is [0, 00), and hence the same
is true for —A. O

The Schrodinger equation for a free particle is
100 + Ap =0
which transforms into ) )
iow) — k[P = 0.
This equation can easily be solved:

Ot k) = e G(0, k) = lim eI (0, k).

The inverse Fourier transform of e~ ¢+ is (Exercise Sheet 1, Nr2 and Nr
3),

2
|

—d _ =
VAT (e +it) e WD

and hence
Jr—y|?

Y(t,x) = ( 47m't)_d/eZ - 1h(0,y)dy. (4.5)

Lemma 4.2. The selfadjoint operator —A generates a unitary group S(t) =
e A on L2(RY). It satisfies

[S@) fllL2ray = £ L2gra)

[S@) flle ey < (Anlt]) 2] fllr ey
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Proof. The L? — L? estimate is equivalent to the unitarity of the group.
The L' — L* estimate for Schwartz functions follows immediately from
([4.5). Schwartz functions are dense in L'(R?) and we obtain the estimate for

all functions in L!. O

The L' — L® shows that solutions with initial data in L' decay. The
solution v disperses then in the sense that it converges pointwise uniformly
to 0, despite the invertibility of S(t).

[14.06.2017]
[16.06.2017]

4.3 The harmonic oscillator

Here we consider quantization of the Hamilton function H(z,p) = 3|p|* +
:|z[? with & = 1. The operator is T = —A + |z[* with D(T) = {f € H? :
|z|2f € L*}. Obviously T is symmetric. For any multiindex we define

ho = (0 — z)%e1#1°/2,

We recall that

j=1
Then .
T,y = Y [(8e, + )9 ]* + d )3
j=1
Tel#?/2 — qe—1=1?/2
and

=2|a|(0 — x)%e” "2 4 (8 — x)Te 1o/
—(2]a] + d) (0 — z)*e /2,

The Hermite functions h,, are eigenfunctions of 7" with the eigenvalue 2|a|+d.
They satisfy

/mmmzo (4.6)
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if a # (8 since
/(é} — 2;)e (0, — mp)e P2y

=(-1) /e—lr2/2(ak + 1) (0; — ;)17
_ 0 if k # 7,
S 20e G it k=

where we have commuted the operators (0 + 1) to the right. If we do this
for every direction we obtain

|hal2. = 2*lalrs.

We have seen that 7! is a compact operator (Exercise 4 on Sheet 3). Tt
maps L? to D(T) (again Exercise 4 on Sheet 3). Thus it has an ONB of
eigenfunctions. Above we determined all eigenfunctions. In particular the
normalized Hermite functions are a complete set of eigenfunctions and we
can define an inverse of T" by

T he = (2|a| + d) " hy,.
The definition of the unitary group is now explicit and easy:
Ul(t)hy = e*Clel+dp (4.7)
We collect the results.

Theorem 4.3. The operator T = —A + |z|* with domain D(T) = {f €
L? : |z f, 6%]“ € L?} is selfadjoint. It defines a unitary group described by
. The spectrum of T is 2Ny + d. The normalized Hermite functions
(21l al7¥2)=12h,, are an orthonormal basis.

4.4 Harmonic polynomials and spherical harmonics

Schrodinger operators with radial potentials are an important special class.
We will diagonalize the angular part of the operator using spherical harmon-
ics.

Lemma 4.4. The dimension of the space of homogeneous polynomials in R?

of degree m is (dtlrfl_l).
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Proof. The monomials of degree m are a basis of the homogeneous polyno-
mials of degree m. The dimension is the set of all multiindices of length m.
This is the number of possibilities of putting m objects into d boxes. Equiv-
alently we may count the possibilities to put d — 1 bars between m objects,
or choosing d — 1 out of m + d — 1 objects. O

Definition 4.5. A spherical harmonic is a homogeneous harmonic polyno-
maal.

We recall the Euler identity for homogeneous functions of degree d:
x-Vf=df.
Lemma 4.6. Let f be a spherical harmonic of degree m. Then
—[al*Af(z/lz]) = m(m — 2+ d) f(z/|2]).
Proof. We have (noticing that Z}izl z;0;(f(z/|z])) = 0)
0=Af

=A(|z[" f(x/]x]))
=[a|"Af(z/]2]) + mV - (J2["2) f(/|x])

—Ja" 2 (|2 PAf (2/|2]) + m(m — 2 + d) f(w/|a])).
O

Lemma 4.7. Let g and h be real homogeneous harmonic polynomials of
degree dg # dy,. Then g and h are orthogonal in the following sense

/ ghdH*™" = 0.
Sd—1

Proof. By the Euler identity and the divergence theorem

d, / ghdH*! = / (z - Vg)hdH™
§d—1 §d—1

[ V- (Veh)dx
B1(0)

= V- (¢Vh)dz
B1(0)

= / gz - VhdH!
Sd—1

=d; / ghdH*!
sd—1

which implies the claim. O]
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Definition 4.8. We denote the space of homogeneous harmonic polynomials
of degree N by V.

Lemma 4.9. Let p be a homogeneous polynomial of degree m. Then
Al 42mp) = a2 Ap,
Proof. Let t € R. We have

A(|z|'p) =|z|*'Ap + Qt\xlt_% Vp+tt+d-— 2)]3:]t_2p
=|z|'Ap + t(2m +t + d — 2)|x["?p

where we used Euler’s formula for the last equality. Set t =2 —d —2m. O

Lemma 4.10. Let p be homogeneous of degree m and d = 3. Then

m—1
POl = a2 (TT(2 = d = 2)p() + |2f%)
7=0

where q is homogeneous of degree d — 2. The left hand side is harmonic for
x # 0.

Proof. The left hand side is the derivative of the fundamental solution. Hence
it is harmonic away from the origin. It suffices to verify the identity for
monomials. We prove it by induction on m. Suppose for |a| =

m—1
0o = fo 2 (TT 2 d = 2j)2° + a0
7=0
where ¢y has degree m — 2. Then
ax]aa|1,|2 d |:)3|2 d— 2m+1)(n (2 —d—2j)x;z" + |ZL’|2 >
7=0

with

[y

r= (2 d—2m)ago + 0, [[@—d—2)a" + |aa).

3

<.
Il
o

We obtain as immediate consequence
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Lemma 4.11. If p is a homogeneous polynomial of degree m then

_i d—2+2m 2—d 2
pla) = — (lal 22" p(@) 2~ + [afq)

m

with ¢, = HT:_OI(Z —d — 2j), for some homogeneous polynomial q of degree
m — 2.

Lemma 4.12. Let f be a homogeneous polynomial of degree m. Then there
exist unique harmonic polynomials p; of degree j with m — j € 27 so that

[4/2] .
f= Z |$|2mef2j
j=0

where )
Dy = — ’(L‘|d_2+2mp(a)|x‘2_d.

m

Proof. By lemma and induction any homogeneous polynomial of degree
m can be written as a sum

m/2

[m/2]
p= D, &7 hn s
j=0

where h,,_2; is a harmonic polynomial of degree m —2j. To prove uniqueness
suppose that we have two harmonic polynomials which agree on the unit
ball. Then the difference vanishes by the maximum principle for harmonic
functions. The formula is now a consequence of the second part of Lemma

411l O
Let a,, = dimV,,. By Lemma 4.4 and Lemma [4.12
[m/2]

d+m—1 )
( d—1 ) = ZO dim Vm_gj
J]=

and hence

Lemma 4.13.
. d+m—1 d+m—3
dlme—( J1 )—( J-1 )

In particular, if d = 2 then dimV,, = 2 and Vy has the basis Re(x; + ixg)™
and Im(xy + ixe)™. If d = 3 then

dimV,, = 2m + 1.
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[16.06.2017]
[21.06.2016)

Let f € C?(S%1). We define the Laplace-Beltrami operator on the sphere
by
Aga1 f = AJC($/|95|>’|35|=1-

Theorem 4.14. The operator —Aga-1 is selfadjoint with the domain
D(=Aga1) = {f € L*(8"") : f(x/|z[) € H*(B2(0)\B1(0))}.

It has the eigenvalues {m(m+d—2) : me Nu{0}} with eigenspace V,,. The
span of {V;,} is dense in L*(ST1).

Proof. Step 1: —Aga—1 maps {f € L2(ST 1) : f(x/|z]) € HQ(BQ(O)\B%(O))} to

L*(S*1). This is immediate since

—lz*Af(2/|z]) = (Asar f)(@/]2])-

Step 2: Elliptic regularity gives

Z |05tz (08, 0)) < C(HAUHL%Bsm)\B%(O)) + HuHL?(&(O)\B%(m))-
7,k=1

This immediately implies the closedness of —Aga—1 with the given domain.
By the theorem of Stone-Weierstrafl we can approximate every continu-
ous function on S¢~! by a polynomial. By Lemma we can approximate
it by a sum of harmonic polynomials. By Lemma homogeneous har-
monic polynomials are eigenfunctions with the eigenvalues in the set of the
theorem. Thus the list of eigenvalues is complete. It is now easy to see self-
adjointness and positive semidefiniteness by decomposing polynomials into
sums of homogeneous harmonic polynomials. O

4.5 The Coulomb potential 1: The discrete spectrum

The Schrodinger equation of a charged particle in a stationary electric field
of a point mass is

h? Ze?

2me,
We restrict our consideration to the relevant case d = 3. Here e is the charge

of the electron in unrationalized electrostatic units for which e?/hc ~ ﬁ and

— 0.
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Z is the number of protons. We will see later that this equation defines a
unitary evolution, or equivalently, that

h2

2me

2
b oA - 25y
r
defines a selfadjoint operator on a suitable domain D. We will see that the
spectrum consists of the union [0, 00) and a countable sequence of negative
eigenvalues accumulating at 0. The continuous spectrum [0, ) corresponds
to scattering states and the eigenvalues to bound states. This Schrodinger
operator is a building block for quantum chemistry and the spectral lines of
atoms. It provides a link between fundamental properties of atoms and ob-
servations. The picture is however incomplete and we will study the essential
impact of symmetries and spin and scattering lateron.
In this subsection we will study the eigenvalues. We consider

h2
2m,

Z2
Ay — ==y = By

2k
2me ?
We search for solutions in L2, and, more precisely, of the form

where F = — k > 0 is the energy.

W(w) = Zu(lal/m)h(z/|z)) (4.8)

||
where h is a harmonic polynomial of degree [. This is a solution provided

e +[_§+1(1+1)]u

——u
dr? r 72

= —u

where
_ 2m.Ze?

kh?
We search for solutions |u| < r'*! as r — 0 and approximately e™" as r — o0

SO we write
u=r""e T E(r).

Since

du . [/l +1 dr
dr e [( r + dr

and

Bty (u- 2D Dy (g AN S

63 [JuLy 26, 2017]



we obtain

d*F 2<1 l+1>dr+<§ 20 — 2

T r

)F ~ 0. (4.9)

This is a special hypergeometric differential equation and should be consid-
ered as a differential equation for which almost every information is explicitly
available. We search for power series solutions

e¢]
— J
= Y lar

7=0

and we obtain

( GG — 1972 — 2097 £ 25(1 + )92 4 (€ — 2 — 2)#*1)

-3
g

3G+ Dagin = 2ja; + 2+ D+ Dagar + (€ = 20— 2)ay .

This allows to compute a; recursively from ay:

(J+20+2)(7+1)aj1 = (= + 25 + 20 + 2)a,

For large j
|aj+1/a] — 2/5
and '
aj~ | ]2/k~C2/T(1+j+B).
k<j
Hence . '
(2r)? B2
F(r) ~ _— 2 "
(r) CZ I'(j+B+1) =€)
7=0
and

W ~ elel/s

for r large. This is in conflict with ¢ € L?(R?) unless the power series
terminates, which happens iff £ = 2n for some positive integer n > [ + 1.
In this case the power series terminates with a multiple of 7"~=!. The
polynomials F'(r) are called Laguerre polynomials and written as L2l+1 (2r)
with the Rodriguez formula (without proof)

etrk qn

Lf‘(x) = n!  dzm

(xn-‘rke—x) )
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They are orthogonal for the measure X[va)xke_xd:c. We obtain

r

F=1 ifn=1+1, F=1-
[+1

ifn=1+2.

It is remarkable that the enery only depends on n and not on I! We obtain

2m.Ze? 1
Kp = —— = —
ER? na
where a is the Bohr radius
h2
a=——— =0.5219177249 x 10~8Z tem.
mese?

This is motivated since £~ is the decay rate for 1) given by the exponential
in (4.8). The wave function ¢ is well localized in B,,(0). We obtain the
bound state energies

LR 136056982V
" 2m, n?

for the single electron hydrogen (Z = 1) and the partially ionized Helium
(Z =2).

The difference between the two lowest eigenvalues for hydrogen is around
10.2eV. For each n we have [ between 0 and n — 1, and for each [ there
is a 2l + 1 dimensional space of harmonic polynomials of degree [. So the
total number of states (dimension) with energy E,, is n%. There is a standard
nomeclature in chemestry for these states/eigenfunctions. The states with
[ = 0 are labelled by s sharp , the ones with [ = 1 by p principal , the ones by
[ = 2 by d diffuse and the ones with [ = 3 by f. The lowest state is labelled
by 1s, next 2s, 2p, 3s, 3p and 3d.

Atoms react with light by moving an electron to a different state, thereby
emitting or absorbing a photon which carries the difference in energy,

E = 27hv

where v is after de-Broglie the frequency which corresponds to light at a
wavelength
A= c/v.

For the transition from 1s to 2s the wave length is

A~ 107%m.
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4.6 Complex differential equations and the hypergeo-
metric equation

This is a short survey on the hypergeometric ODE. We consider a m order
complex differential equation in the complex plane

ul™ = F(z,u,, ..., u™Y)

with initial data
u(j)( Zo) =)

where F' is holomorphic in a neighborhood of the initial data.

Theorem 4.15. There exists a unique holomorphic solution in a neighbor-
hood of zy.

Proof. We provide only a sketch of the proof. Along lines we obtain an
ODE which has a unique solution. This gives a candidate for a solution in
a neighborhood, but one has to verify that u defined in this fashion satisfies
the Cauchy-Riemann differential equations. Thus is done similarly as in the
construction of potentials for vector fields F' which satisfy

oF; _ R
dr; Oz
O
Linear equations are a particular case. The equation
u' = au (4.10)

has the exponential e®* as solution. Another one is the equation

2u' = au

where a € C. Remove the ray (—oo, 0] and write z = exp(y) with |Imy| < 7.
Then the equation is equivalent to

du _ au
dy
u(y) = Ce™ = Ce™* = 02,

We can easily replace u by a vector U and a by a matrix A. A point of this
type is called regular singular. The eigenvalues of A are the characteristic
exponents.
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Equations on C and more precisely the Riemann sphere are of particular
interest.
The solutions to

(z —b)u' = au (4.11)

are (z — b)® where we have to choose a branch of the logarithm.
[21.06.2016]
23.06.2017]

We turn to second order equations

u" = g(z)u' + h(z)u
with rational functions g and h.
The Riemann sphere C = C u {0} is equipped with the coordinate maps

z:C\{w}=C—-C, z':C\{0}—C.

Then there are a finite number of poles of the coefficients g and h on the
Riemann sphere.

A fact: Given a three tuple of pairwise disjoint points zg, z1, 22 on the
Riemann sphere there is a Mobius transform (biholomorphic map of the

form
a1z + by
z—> —
1z + d1
with a;d; — bye; = 0) which maps (0, 1,0) to these three points.
We call a singular point zq regular if the equation can be written as first
order system of the form

dU
z—20)—— = f(»)U
(=~ 20) = /()
with f holomorphic near z; and matrix valued. zy = o0 is a regular singular
point if the equation can be written as
aUu
Z— =
dz

with f holomorphic in a small ball.

flzhu

1. One pole. If there is one pole we can move it to oo by a Mobius
transform and obtain a polynomial differential equation

u" = p(2)u' + q(z)u.

oo is in general not a regular singular point.
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2. Two poles. In this case one can move them to 0 and co. The equation
becomes .
u’ = 2 () + q(2)u)

with polynomials p and ¢ and 7 € N.

3. Three poles. Normalization by a Mobius transform moves them to
0, 1 and oo. Multiplication by z%(1 — 2)? with a, 3 € C (taking out
a suitable line) one can normalize the problem in the case of regular
singular points to

d? d
z(l—z)d—;;+[c—(a+b+l)z]d—z—abu=0 (4.12)
with a, b, c € C. This is the hypergeometric differential equation.
Lemma 4.16. The hypergeometric differential equation has a unique holo-
morphic solution near z = 0 with u(0) = 1. We denote it by

F (“ b, z> (4.13)

C

Proof. We construct the solution by a power series. Then

1 1
(e b;z :1+a_bz+a(a+ )o(b + )22
c cl! c(e+1)2!
and it is not hard to see that the radius of convergence is 1. O]

Suppose that ¢ # 0. Then a second solution is given by

e a—c+1 b—c+1‘z
2—c )

To see this we search a solution of the form z'~¢v. Then

0=2(1- z)% +lc—(a+b+ 1)2]@ — abz' "
221%[2(1 — 2" +2(1—¢)(1—2)v" — (1 — c)c1 ; v
tle—(a+b+ 1)z + C(lz_ Dy (=) a+b+1)+ ab)v]

:zlfc[zu W+ [2 =)= (a+b—2c+3) W + (1—c)(c—1—a—b)— ab)v]
zzl’c{z(l — z)@ +2-c—(a+b—2c+ S)Z]Z—z —(a—c+1)(b—c+ 1)1}}.

dz?
(4.14)
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Equation (4.9)) is a confluent hpyergeometric equation. It can be written
as Kummer’s confluent equation

d*u du
z@—i—(b—z)%—au:O (4.15)
with 7 = z/2 and a =1+ 1 —¢/2 = [+ 1 — n is a nonpositive integer and
b=2(l+1).

Lemma 4.17. Suppose that b is not a negative integer. There is a unique
holomorphic solution with M (a,b;0) = 1 near 0. It is denoted by M (a,b; z).
It is a polynomial if a is a negative integer. There is a second solution defined
in B1(0)\{(—1, 0]} which is unbounded near 0 if Reb > 1.

Proof. This follows from

a ala+1) ,
Mab;z) =1+ 2,4 L2472
(a.bi2) = 1+ 32+ 0 i

The second part is an exercise. O

Now we check (4.9).

Lemma 4.18. The solutions described in terms of the Laguere polynomials
are the only solutions to (4.9) which lead to bounded eigenfunctions of the
Schrodinger operator with negative energy.

4.7 Selfadjointness of Schrodinger operators

The main theorem in this section is

Theorem 4.19. Suppose that d > 4, V € L¥? + L* is a real potential. Then
the Schrodinger operator
U - —AV + VU

defines a unitary evolution and a unitary operator with domain H?. The same
conclusion holds if d < 3 and V € L*> + L* and ifd = 4 and V € LP + L™
for some p > 2.

It immediately implies that the Schrodinger operator of the hydrogen
atom is selfadjoint with domain H? since we can decompose

2|7 = Xpaj<t 2|7+ Xjagsa |2

The second term is bounded, and the first lies in L*(R?).
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Definition 4.20. Let A be a densely defined closed operator with domain
D(A). A densely defined operator B with domain D(B) > D(A) is called A

bounded if there exist constants a, b so that
| Bz < a Az| + b]z|.
Here a is called the A bound of the A bounded operator B.
By the triangle inequality

Lemma 4.21. Suppose that Bj, 7 = 1,2 are A bounded with A bounds a;.
Then a; By + agBs is A bounded with A bound at most |aq|ay + |aglag. The
space of A bounded operators is a vector space.

Theorem 4.22 (Kato-Rellich). Suppose that A is selfadjoint with domain
D(A). Suppose that B is A bounded with A bound a < 1 and symmetric.
Then A + B with domain D(A) is selfadjoint.

Proof. Clearly A+ B with domain D(A) is symmetric. We have to show that
the deficiency indices are 0, or, equivalently, that A + B + ¢\ is surjective for
one A > 0. We claim that

lim |B(A — i\~ <a.
A—00
To see this
|B(A—iX) 'z < al A(A —iN) "'z + b (A —iX) "'z < (a+b/X\)|z]

and the limit is at most a.
We choose \ so that
IB(A+i\)Y < 1.

Then
(A+B£i)\) = (1+BALiN) ) (ALiN)
is surjective. O
Let V e (L2 + L*). We write it as Vy + V; with Vj € L¥? and V] e
L*. Since CF(R?) is dense in L¥? we may assume that for a chosen ¢ >
0, |[Vo|za2 < e. Clearly the multiplication by a bounded function is —A

bounded with a = 0. It remains to show that the multiplication by an L:
function is —A bounded. We recall the Sobolev inequality:

[l zr@ey < €|V fllLaa)
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for 1 < g <d,

_|_

1
.

==
QU

We apply this twice to obtain
1f ] r(ray < CHD2f||Lq(Rd)

provided 1 < g < %

_l’_

1
.

SRR
SH NN

Thus, if d > 4
IVoull p2ray < Vol g lull, 2 < Vol g [D*ulze < el Au]Le.
For d = 4 we recall the Sobolev inequality for 2 < r <

lull ey < cllulmgra)

and for d < 3 we use Sobolev’s inequality and Morrey’s inequality
[ull e may < cllu] g2 ra).-

We equip H? with the norm

Julfe = (1 + [EP)a]Ze = fulZe + [Aule.

If d < 3 (the argument for d = 4 being similar), given ¢y > 1 there exists
c; > 0 so that

[ < coll A2 + e[ 2,
and thus (without loss of generality we can assume also ||Vgl|zz < €)
Vo llz < [Voll 29l < coell Az + creld] 2.

[23.06.2017]
28.06.2017]

4.8 Eigenvalues of Schrodinger operators

We denote by Cy(R?) the space of all continuous functions with limit 0 at
infinity. We denote by H~*(R%) the dual space of H*(R?) with the norm

el e = FlEasy + 1 Vullagen, = [ (1 + PP

and
ol sany = [ (1 )
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Theorem 4.23. Suppose that V € L%(R) + Cy(R?) if d
Co(R?) ifd = 2 withp > 1 and V € LY(R) + Cy(R) if d

the Schrodinger operator

>3, Ve L(R? +

1. We consider

H's¢ - -AYp+Viype H?
and call z € C an eigenvalue if there exists v € HY(R?) with
—AY + V) = 2.

If z is an eigenvalue then z € R.
If 1 is an eigenfunction with eigenvalue z < 0 and if 0 < Kk < 4/—2z then
there exist C(z,k, V) and R so that

e ] 2qrey + €™ Vol 2gre) < Clel 2oy (4.16)

The set of eigenvalues is discrete in (—00,0). Every negative eigenvalue
has finite multiplicity.

We observe that there exists C' so that

rlz|/2 rlz|/2

ul < JeF e + o5 Vulz < Clle

C e ul g

which is not hard to see and gives an equivalent expression for the left hand
side of (4.16]).

Proof. We begin with the observation that if

~AY+ Vi = 21

then
VY, Vo) + Vb, ¢) = (1), ¢)

for all ¢ € H' and vice versa. In particular we may set ¢ = 1. Then both
terms on the left hand side are real and hence z is real or ¢ = 0.
Now let ¢ € L? be nonzero, z < 0 and

A+ VY = 2,
Let h e CL([0,0)) with h(0) = 1. We set ¢ = h(|z|)1. Then

Re(Vw, Vlh(lau]) = [ hila)|VoPds + %Z [ b o
= [ ehiwerae g [or S
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We choose h(|z|) = e*l#l. Then

d Ed _
KX ;e 1 d—1
O, — = —e"l[K? 4 k——]
; T x| 2

N —

hence by —Av = zip — V4p we have
1
/@W\VW? —(z+ §n2)/e“'x|¢\2d5’7
1
- —/veﬂlxlwl% +5(d - 1)&/6”'1'!:6“!1#!261%-

We write

V=W+W
with HVOHL% < ¢ if d = 3 (modifications for d = 1,2 are an exercise) and
Vi € Co(R?) and R so that |Vi(x)| < ¢ for |z| = R and R™' < ¢ for ¢ to

be chosen. Then, as in the proof of Theorem [£.19] the right hand side is
bounded by - pretending that |z|~! is bounded near zero -

Ce / eV TGP de + Clly 72 (s + 26 / eV IRy 2 da,

The singularity at x = 0 can be avoided by replacing |x| by 4/1 + |x|? or the
weight.

Assuming that the right hand side is bounded we subtract these terms
from both sides and arrive at . To ensure this boundedness we choose

|

h(lal) = ¢

and then we let ¢ tend to 0. This completes the proof of .

As for selfadjoint operators we see that there are no generalized eigenfunc-
tions and eigenfunctions to different eigenvalues are orthogonal. Let ¢ > 0,
zj < —e and 1; an orthonormal family of eigenfunctions to the eigenvalues
zj. We want to prove that there are at most finitely many v;, which we prove
by contradiction. We claim that 1, converges weakly to zero. Indeed,

lim (4, 1) = 0

for all [, hence the same is true on the span, and hence also on the closure of
the span. This implies weak convergence. By (which holds uniformly
for all the eigenfunctions with eigenvalues below —¢) and Kolmogorovs crite-
rion the sequence converges strongly in L?(R%). The limit is nonzero (since
|1jz2 = 1) and this is a contradiction (since we claimed v; — 0). O
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Normalized eigenfunctions to the eigenvalue z are called bound states for
the energy z. The bound state to the lowest eigenvalue is called ground state.
There is not much we can say about a potential eigenvalue 0.

Theorem 4.24. Suppose that V € L* and there exist C' and s > 1 so that
V()] < Clz|™.
Then there is no positive eigenvalue.

The strategy is the following:
1. We prove that such eigenfunctions have to have compact support.

2. The second step is called unique continuation: If a solution to a suitable
homogeneous elliptic equation vanishes on an open set it has to be
identically zero.

The proof consists of a number of arguments of independent interest. It
is convenient to introduce conformal coordinates. We write

r=ey
with |y| = 1 and ¢t € R provided z # 0.

Lemma 4.25. The following formula holds

- d—2\2
|$\2§JA(|x\27du) = 0ju+ Agaru — (T) u.

Proof. We write x = ry with r > 0 and |y| = 1. Then with polar coordinates

d—1 1
Aw = 6fw + —0w + —2ASd71w
r r

and the statement is now a consequence of the chain rule. O

Now let z = 1 > 0. The restriction to z = 1 is unimportant but it
simplifies the notation. The condition on V' implies that for all ¢ there exists
R so that

V(z)| < ¢/|x] for |z| = R.

We rewrite the equation —Avy + Vi) = 1) as with ¢ = |:B|%dv
Vi + Aga-1v — ((d — 2)/2))?v + v — e*V (ty)v = 0. (4.17)
We consider

vy + Aga—1v — ((d — 2)/2))?v + *v = f. (4.18)
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Lemma 4.26. Suppose that i > 6 > 0, WK > —1e* and |h¥)| < 1e* and
that v(-,y) is compactly supported in (0,0) . Then

W~

[e"O* 0] 2 < e f] 2.
Proof. Let w = e"Dy and g = e"® f . By ([{.18)) it satisfies
wye — W'wy — 0;(R'w) + Agarw — ((d — 2)/2)*w + |BPw + e*'w = g.

It suffices to prove the estimate for w(t,y) = w(t)h,(y), 9(t,y) = L(t)hm(y)
where h,, is a harmonic polynomial. This reduces the problem to

u” — hu' — (R'u) — [(m+ (d—2)/2)* — h*u + e*'u = L.

We multiply by u’ and integrate and notice that u is compactly supported.
Then

1
[l = [t SO~ W
1
<liloalls + 5 [ Huat.

We subtract the second term from both sides and obtain

1 1 )
T T [P T PR A

We subtract the second term from both sides and arrive at the desired in-

equality.
We used more regularity in the proof then we had assumed in the state-
ment. This can be justified by regularizing v first. O]
[28.06.2017]
[30.06.2017]

We can easily relax the condition of compact support, but we want to
keep that 0 is not in the support.
We return to the transformed equation (4.17) and define for an R > 0 to
be chosen later
w =n(t— R)v

where n(s) = 1 for s > 1 and 7(s) = 0 for s < 0. It satisfies (4.18) with

f=e"Vw+ 20t — R +1"(t— R)v.
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By Lemma and the monotonicity of h, there exists a constant C' de-
pending on [¢] g such that

le"etw| 2 < C(e" T 1 |eheX Vw]).
We choose R large so that
e\Viely)| < 1/(2C), fort = R,

so that we can absorb the V' term on the right hand side by the left hand
side. Then
|eetw|| 2 < CeM BT,

We will see that we may choose h = 7t with 7 > 0. Then
[T DER=D1 5 < ©
in particular
|lwllr2(usrioy < Ce™™ — 0 for 7 — 0.

This implies that 1 has compact support provided we show that we can do
the argument without get unbounded terms. There are two points to add:

t
=T
1+€0t

h(t)

(4.19)
and let ¢g — 0. We notice

1
|t) r2may = €2 0] 2@xsi1) (4.20)

and we apply the argument with the above h and a truncation at large t to
obtain the estimate of Lemma without the truncation at infinity.

Theorem 4.27. Suppose that 1) € H' satisfies
—AY+ Vi =0, V bounded,

in an open connected set U. If 1) vanishes in an open set then it vanishes on

U.

Proof. We argue similar to above and consider
— U — Agdfl'l} + ((d - 2)/2)2U = f

and claim that
le™ ]2 < [l f] L2 (4.21)
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forall 7 € %Z—l—}l and v with compact support. As above it suffices to consider
v =0(t)hn(y) and w = e™0(t). We write it as

—w" + 21w’ + [(m + (d — 2)/2)* — 7w = g,
which can be rewritten as

d
(—— +K+7

o )(dt+/<—7')w g, k=m+ (d—2)/2.

Suppose that g € L2. We claim that there is a unique w; € H' so that

(—% + (k+7))w; = g.

Uniqueness is easy: If ¢ = 0 and w; = ce®™+™? and it is in L?(R) only if
¢ = 0. Suppose that kK < —7. Then

t
w(t) = — / AT g () s,
—00

and by Schur’s estimate

w2 < max { Sup/
t

—0

t

0
(H+T )(t—s dS Sup/ e(l'ﬁ-‘rT)(t—s)dt}”gHL2

<[t + 7 gle.

Then m < 4if 7 € 24 1Z The case k > —7 is similar with w;(¢) =

O (k+T s) :
[ et g(s)ds. 1t remains to study

K—T)w = w

<dt
which follows by the same arguments. Estimate (4.21]) is equivalent to

Nzl )22 < cflo[**7 A 2 (4.22)

for 7 € %Z + Zi and ¢ with compact support.

Suppose that ¢ has compact support, that 0 € U is outside the support
and define p = dist{0,supp ¢}. We assume that p is small and By,(0) < U,
which holds by translation invariance of the problem. We want to reach a
contradiction. Let n € C® satisfy n(r) = 1 for r < 1, n(r) = 0 for 7 > 2 and

define
= n(|z[/(2p))(z).

82 [JuLy 26, 2017]



Then
—Au = —Vu—2V(n(lz[/(2p))) - Vi — Aln(|z]/(2p)))d

1 1
and, for 7 € 5Z + 7,
llz["ul 2 < Cf|2[*Vul 2 + C(4, p)(3p)"
Since
[z Vul e < (40 |V ] o= ||| 2

can be absorbed by the left hand side if p is sufficiently small which we may

assume. Then 9
HuHLQ(BQp(O)) < 0(5)7'] — 0

for a sequence 7; € § + 37 with 7; — —oo. Thus u|g,,0) = ¥|s,,0) = 0,

contradicting our assumptions.

[]

This technique goes back to Carleman and the inequalities of the Lemmas
are called Carleman inequalities.

Lemma 4.28. Let V be a continuous real potential which satisfies the as-
sumptions of Theorem . Then X(—w,0)(—A+ V) is the sum of the projec-

tions to eigenspaces with negative eigenvalues.

Proof. Assume that there is ¢ € H' so that ((—A + V)¢, ¢) < 0. Otherwise

d
A0) = Jon, 012 + / VigPde >0, Voe H',

j=1

and o(—A+ V) < [0, ).
We have seen that there exists C' such that

(=A+ V), ¢) = =C9]72.

Now let ¢; be a minimizing sequence with [¢;];2 = 1 and

(=A+V)gj,¢;) < —¢.

Then, as for previous proofs in the subsection,

IVo;lL = <(—A+V)¢ja¢j>—/V!¢j\2dfc < —e+1/2|V;]1. + C(V)lg511:
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and hence there exists C' so that ||¢;|z < C. We may assume that ¢, con-
verges weakly in H' to ¢. For every continuous V; the sequence ¢;|supp v, con-
verges in L? by the compactness of the embedding H*(Bg(0)) — L*(Bg(0)).

Thus
i [ Vi
j—o0

exists and is nonzero. Moreover
IVé| < liminf [V,

and the same holds for the L? norm. The limit cannot be trivial. We rescale
the L? norm to 1 which decreases

(A +V)o, ).

Since we had a minimizing sequence, the rescaling factor had to be 1 and
$; — ¢ in H'. ¢ satisfies the Euler-Lagrange equation

—Ap+Vo=zop
for some z < 0. But then

(A +V)p,¢) =z

and z is the energy.

We repeat the procedure in ¢+ if there is a perpendicular function with
negative energy. This yields an orthonormal sequence of eigenfunctions.
There can be only finitely many until the energy in the orthogonal com-
plement is above —e. O

30.06.2017]
[05.07.2017]

5 Scattering

In this section we will consider real potentials V € L? + L*. We will add
conditions whenever needed. We know that —A + V' is selfadjoint with real
spectrum. We will see that under suitable assumptions

1. [0,00) is in the spectrum.
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2. Let P : L?*(RY) — W be the projection corresponding to the mul-
tiplication by x(o,0)(—A + V). Then there exists a unitary operator
U: L?> - W so that

UeitA _ 6it(A—V)U

3. We have seen that there is an at most countable set of negative eigen-
values with 0 the only possible accumulation point.

4. Sometimes it is possible to replace the characteristic function above by

Xo.0) (A + V).

The resolvent and the evolutions are connected through the formula of
the next lemma.

Lemma 5.1. Let X be a Hilbert space and T be a selfadjoint operator on X.
Let n € C(R) with compact support. Then

@T)6.6) = -t [ 4T =A% i2) 0. 00

Proof. By the spectral theorem it suffices to consider X = L?*(u) for a prob-
ability measure 4 on R and T' = M, the multiplication operator by x.
Then we have to show that

+ Dlimtm [ O (@ = A T ie) M é(e) Pdpu(z)dr

me—0 RxR

. €
=tim [ 160 [ s (Vdae)
B /R n(@)|¢ (@) du() = 19, )12

]

It is not difficult to extend this proof to n(z) = ¢ and we obtain a
similar formula for the generated group e’. It is tempting to try to study
the limit

lim(T — X Fiel) ™!

e—0

and we will see that this is possible for T = —A and many Schrédinger
operators —A + V. We will also relate the limit of the resolvents of the two
operators via the Lippmann-Schwinger equation.
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5.0.1 The spectrum of Schrodinger operators

We recall that up to conjugation by a unitary operator every densely defined
selfadjoint operator can be realized as multiplication by x in some L?(u)
where p is an at most countable sequence of measures. For ¢ € X we define
X4 the closure of the span of powers of the Cayley transform and its conjugate
to ¢. By Theorem there exists a unique probability measure i and a
unitary map U : L*(u) — X, with

U(l)y=9¢,  Ulzf)=TU(f).

Definition 5.2. Let T be a densely defined operator. We call A € C eigen-
value with eigenfunction » € D(T) if Ty = M.

Now assume that T s selfadjoint. The continuous spectrum s the set
of all X\ € R in the spectrum so that for all ¢ the measure u, (the measure
corresponding to T — X on the span of CV¢ and (C7)*¢ where C is the Caley
transform of T — X) is absolutely continuous with respect to the Lebesque
measure. The singular spectrum is the complement of the discrete and the
continuous spectrum in the spectrum.

5.1 The wave operators

Let X be a Hilbert space (to free the letter H for Schrodinger operators).
Let Hy be a selfadjoint operator. Let H be a second selfadjoint operator.
We denote the generated groups by e *Ho resp. e H . We recall that e®®)
is the solution to

1&1& + Aw = O, ¢(0) = 1/)0.

We keep in mind the example that Hy = —A and H = —A + V with some
suitable potential V.

Definition 5.3. We define the domain of the wave operators D(W,) by

D(Wy)={peX: thIJP ¢ e tHoy, exists }
—> T 00

and for ¢ € D(Wy.) ' '
Wiw _ thI_P e'LtHefthow.
— T 00

We say that D(W,) is the set of all incoming states and D(W_) is the
set of all outgoing states. If 1 € RanW_ n Ran W, we call it a scattering
state.
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Clearly ' .
W] = Jim e e 0] = [

and hence D(W,) is closed. A similar argument shows that Ran W, is closed.

Lemma 5.4. The sets D(W4) and Ran W, are closed and

Wi : D(Wy) — Ran Wy
1s unitary. Moreover
Wie Hoyy = e ™ Woah, ope D(Wy). (5.1)
Proof. Let ¢; be a Cauchy sequence in D(W., ). Then

e e (g5 — d)| = ¢ — &l

and

tEI_ElOO 6itH6—itHo <¢] o ¢l)

is a Cauchy sequence. Thus D(W,) is closed. And W, : D(W,) — Ran W

is unitary:
(eitH()e—itH)(eitHe—itH())¢ _ ¢, and Wi,¢ _ thI_P eitHOG_itH’QD.
+ ot
Hence Ran W, is closed. The same argument applies to W_. Finally

W+e—tho¢ = lim BZSHG_Z(S—H)HOw = lim €Z(S_t)H€_ZSHO’¢ _ e—thW+¢
8§00 5§00

under the assumption on ). O]

In particular D(W,) is invariant under ¢®#° and Ran W, is invariant
under e, Hence by differentiating (5.1]) with respect to ¢ we also have

WiHyp = HWy 4
for ¢» € D(Hy) n D(Wy). We define the scattering operator

S=W*W,, W?*= lim "o "

t——00

with domain {¢p € D(W,): Wiy e Ran W_}.

87 [JuLy 26, 2017]



Lemma 5.5 (Cook). Suppose that D(Hy) < D(H). If

/ I(H — Ho)eFtos| < oc
0
then v € D(Wy). In this case
[Wetp — o] < / [(H — Hy)e o dr.
0
Proof. We write
itH —itHg _ ti isH —isHg
(M0, 6 =)+ [ g
=@¢w¢/@ﬁW—mw%%m@@
0

=) i [ U = Ho)e e s
and
[t = e o, i < ol [ I - Hope o
0 0

This completes the proof. n

Theorem 5.6. Let d = 3. Suppose that Hy is the free Schrodinger operator,
H=Hy+V,VelL*R3. Then D(W,) = L*(R3).

Proof. Since L' n H? is dense in L? and D(W,) is closed, it suffices to show
L' n H* =« D(W4). If ¥ € L' n H® then by Lemma [4.2] and Sobolev’s
embedding H3(R?) — C,(R?) we have

0 0
[ el <Vl [ et e
0 0 » 3 |
<|V”L2[/ (47Tt)_§dtHwHLl(R3) + sup ||€ZtA1/)"Loc(R3):|
1 0<t<1
<V a2 12y + sup 1€ (e |
o<i<1

Since derivatives of solutions to the free Schrodinger equation are again so-
lutions to the free Schrodinger equation, we know

[ 25 = [0] o

Thus by Lemma [5.5] ¢ € D(W.). O
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This is not sufficient to cover the hydrogen Schrodinger operator and
even the statement requires a modification for that operator. The modifica-
tion is called long range scattering and occurs already for classical Coulomb
scattering.

5.2 The case of one space dimension

In this section we want to study the structure of the problem in the simplest
possible setting. We consider the Schrodinger operator

"+ Vy
where V' € L?(R) is assumed to have compact support and the solutions to
—)" + Vi =20+ f.
The resolvent of the free equation —¢” — z¢p = f is (recalling (4.3))

(Ro(2)f) () = ﬁ / eV f (y)dy, (5.2)

where we take the square root /z with the positive imaginary part if Im z # 0
so that the exponential decays as * — +o0. We write

Ro(A+i0)f = lim Ro(\ +ie)f (5.3)

e—0,+e>0
if \ > 0 for f e L2, with compact support. Then Ro(A+10) : L2,,., = Li...
We denote by L, the L* functions with compact support and by L7,

the functions such that the restriction to open bounded sets are in L?. We
use the same indices also for other function spaces.

Lemma 5.7. Suppose that A\ > 0 and that u € C}? satisfies
— Ot = AU in R. (5.4)
Then there exists vy so that

W(§) = v405(8) +v-0_x(8)-

Moreover

1 T
lim — / uPde = (20) " (o ? + oy ),

R—o 2r
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and for fi, fo € Lgomp,
1 [ _—

lim 2—/ R(X +10) fiR(X + 10) fodx

A S (5.5)

(fl(\a)]g(\/x) + fl(\/j)\)]g(\/j)\))?

_ T
4N

1 " _—
lim / RO\ + i0) £ RONT 10) fada: = 0,

r—o0 21

-

lim zir /_ R\ +40) frtidz = iél\%(fl(ﬁ)ﬁ + fi(=vVA)T0).

Proof. Tt follows from ([5.4) that @ is supported in ++/X and hence it can be

written as

D SPEA A
T VAT ) T
and N
u = (2%)_% Z (an(—ix)"e”ﬁ + bn(—ix)"e_izﬁ)
n=0

Since u is bounded by assumption, its Fourier transform is a sum of Dirac
measure and hence N = 0 and we take v, = ag, v_ = by such that

u(z) = (27?)’%(146”“& + v,e’m&).

Then

1 T 1 r .
u / ulde = (2)7 (jo, 2+ o) + 5 Re(w,7- / 23 i)

T

and since . )
2izv/ A 2irv/A
e dr = —Ime
/T VA
the first identity follows.

05.07.2017]
[07.07.2017]

For the second equality, we first notice

. . { —iv Iz i T—
e_zﬁmR()\-i-'LO)fl(fE):me VA /eﬁ( Y f1(y)dy

=(2m)2

7
24/
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if f1 has compact support and x is sufficiently large. Similarly, if —x is large
enough then

. _ i v
elﬁxR(/\—FZO)fl(x) 22\—561\595/6 VA( y)fl(y)d’y

—mts=hi-V).

Notice also that if we have the convergence

lim g(z) = ¢,

T—00

then we know .

1
lim — [ g(y)dy = ¢,

r—o0 T 0

since for any positive big enough real number r

. /OT(g(y) —c)dy = %/00 (9(y) —c)dy + %/T(g(y) —c)dy,

To

where as r — o0 the first term converges to 0 and the second term is bounded

uniformly by [g|p,1 — ¢| and hence converges to 0 by g(y) — c. Now we
calculate the second equality:

r—00 21

[ -
lim — / Ro(A 4 i0) fiRo(A + 40) fodx
0

_ % Tim (Ro(A + i0) 1) () Ro(A + 10) fo()

The integral on [—r, 0] gives then ﬁfl(—ﬁ)fg(—ﬁ).
It also implies the third equality. We restrict to the integral from (0, c0)

lim 21 /0 ' R(A +10) fi R(A — 10) fodx

r—00 4T
T T RPN Faay
-l o /0 % fy (VA o (V)

= 0.

91 [JuLy 26, 2017]



The fourth equality is similar: We combine the argument for the first and
the second equality

1 T
lim / RO\ — i0) fyida
0

r—00 4T

= lim oo [ e i ghay(am) e eV

]

Theorem 5.8. Let A > 0, f € L?(R) with compact support and assume that

ue H} (=R, R) satisfies
d2
Let
uz :=u— Ro(A £1i0)f.
Then

d2
s
and suppose i+ = U4 40, /5 + Uus+ _0_ /5, then

= )\U/J—r

U 24wy P = |ue 2—u2=llm/u_d:c. 5.6
T A e A 7 f (5.6)
Proof. We define
1
Ug = U — §(R0()\ + ZO)f + Ro()\ — lO))f,
then

(Ro(A +i0) f — Ro(A —10)) f.

l\Dlr—t

U+ =1U

Since (—02 — A)Ro(A £140) f = f, we have again
d 2

—— Uy = )\Uo
dx ’

and we define ug 1 the same way as u; 4, u_ 4. Noticing

/ (Ro(A + i0) ) Fdr = / (Ro(A — i0) f) fil,
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approximating by smooth functions and using unitarity of the Fourier trans-

form
Im/ufdx = Im/uofdx —Im/uofdf 57

Im u0+f( A) + o f( \f)]

We claim that

hm[(!k|2 A+ie)) = (k> = (N —ig)) ] = \%i(&\a +6_y5)  (5.8)

E—)

as distributions. To see this we assume that ¢ is a Schwartz function and we
compute for € > 0

/[|k|2(1AH€) - |/<;|2(1A¢5)]¢<k)dk:/0 ..dk;+/oo...dk:

and

o
/0...dk=m O k_\/aw—kﬂ/lm]gb(k)dm@(e)
since for k > 0
1 1 1 1 1
k?—(Aﬂ'a)_kQ—(A—ig)_zﬁ[k—m_k+m]
Now /A +ie = VA(F1 +i5) + O(e?),

< Ce.

[ 1 B 1 } o 2ig/2VA L o)
VA tie k+VA—iel (k=) 2 '
Hence (j5.8)) follows:

L1 w0 €
B

Y | £ o0 [ €
- llf_é VA /_oo T (k— V)2 + O (R)dk =l 3 /_oo (k— V)2 + k)
_ \/—ng(\/X).

We rewrite identity (5.8)) as

Ro(\ +i0)f — Ro(\ — i0) f = %i[e“ﬁf(ﬁ) +e VA f (—fA)]
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Thus

and

Equality (5.6|) follows now from ([5.7)). O

After these preparations we turn to the Schrodinger operator with bounded
and compactly supported potential V. Now consider

d2
(ot V-af=g (5.9)

with z € C with Im z # 0 and V and ¢ with compact support. Since —% +V
is selfadjoint, the operator

(—@4—‘/—2)

is invertible.

We rewrite the equation (5.9) as (with f = Ry(2)f)
f+VRy(2)f—g=0 (5.10)

and we want to study its solvability.
Suppose that f satisfies ((5.10)) with g = 0:

f+VRo(2)f =0.
Then F = Ry(z)f satisfies

— F"+VF =zF. (5.11)
If Im z # 0, since V' is compact supported, for z > R we can write
F =c eV
and for r < —R
F =c_e V&=,

We are particularly interested in the limit as 2z — A\, A > 0. In that case we
have to pay attention whether we approach A\ from above or below, which
determines the behaviour of F' outside [—R, R].
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Theorem 5.9. Suppose that g € L*(R),V € L®(R) have compact support.
Then Equation has a unique solution for Imz # 0. And for every
A >0 the limit

lim  R(z2)g

z— A\, £ Im2>0

exists in Cy for g € L? We denote it by

comp-*
R(A £10)g.
Then for all R > 0

{ge L?,suppg < [-R, R]} x {z:Rez > 0,Im £z > 0} > (g, 2)
— R(z)g € Co([-R, R])

1S continuous.

Proof. Suppose that
ge L%, Vely, Lh:={helL”:hiscompactly supported in (—R, R)}.

The map

i (R
(9,2) = (Ro(2)g)(x) = NG / . eVArYlg(y)dy € Cy (R, R)

where 4/z denotes the root with positive imaginary part is clearly continuous.
Ro(z) is compact as a map from L% to L?*(—R, R) and hence V Ry(z) is also
compact on L% since V : L?(—R, R) — L% is continuous. Thus for z = A > 0,
equals to search for f € L% such that

(1+KM\+i0)f=g (5.12)

where K = V Ry(\ +i0) is compact on L%.

By the Fredholm alternative it is uniquely solvable provided there is only
trivial solution to the homogenous problem with g = 0. It suffices to show
that F = Ry(\ +140)f € L2 is zero (using that Ry(\ + 40) is injective since
(=02 — M) Ro(\ £ 10)f = f). Equivalently, we claim that the homogeneous
problem

— F"+VF = \F, (5.13)

with ‘
F = cpe™l for |z| = R,

has only the trivial solution.
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07.07.2017]
[12.07.2017]

Suppose that F'is a solution. We will prove that ¢, = 0. Then 0 is the
unique solution to (5.13)) with

F(~=R) = F'(—R) = 0.

Thus f = 0 if ¢ = 0 in (5.12). Hence the operator on the lefthand side of
is invertible and we denote R(A£140) = Ry(A+i0)(1+ V Ro(A £:0))~ %
Since on {z : Rez > 0,Im z > 0}, 2 — V Ry(z) is continuous as map from L%
to L%, the same is true for 2 — R(2) as map from L% to Cy([—R, R]).

Take F = Ro(\ +40)f and hence F = —Ry(\ +i0)V F. By with

Im/V|F!2daz =0,
we have ' = —Rg(A + i0)VF = —Ro(A — i0)V F. Hence by (5.5),
1 T

1 T
lim — |F|*dr = lim 2—/ Ro(A + i0)VF Ry(A — i0)V Fdx = 0,

r—00 LT _ r—00 AT

and thus we get

. 1 " 1
tim oo [ |PRdr = S(e. + fe-) = .

Thus F' has compact support and it satisfies . It is the unique solution
to the initial values problem with F'(—R) = F'(—R) = 0, and hence it is
trivial. We will see that this argument generalizes to higher dimensions. In
one space dimension however there is also a more elementary argument.

Indeed, also F is a solution of and the Wronskian
W=FF-FF
is constant:
W' =F'F—-FF'=(V-\NFF—-F(V - \F =0.
We evaluate W at © = R and = —R and obtain
o4 P(2iVA) = —[e-*(2iVA)

which implies ¢4 = 0. O
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Definition 5.10 (Outgoing and incoming). We call f outgoing if it satisfies
the Sommerfeld radiation condition

f _ Ciezﬁ|x|

for |x| large. We call it incoming if it satisfies the this condition with the
opposite sign in the exponent.

It is interesting to note that V Ry(z)f has an extension beyond the real
axis with a pole at z = 0, which satisfies a generalized outgoing conditions
where we continue the branch of /z through A.

The central definition is the distorted Fourier transform.

Definition 5.11 (Distorted Fourier transform). Suppose that f is compactly
supported. We define its distorted Fourier transform by

Fif(k) = F| (1 + VRy(k* £0)) " | ().

Let B4 be the closure of the span of eigenfunctions of —A + V and E€ its
orthogonal complement. It is immediate that z is an eigenvalue iff one of the
spectral measures carries a point mass. We define the projection to E¢ by

P. = X(0,0)(—A + V)

since there are no positive eigenvalues. For d = 1, 0 is not an eigenvalue
neither.

Theorem 5.12. For all f € L% we have

comp

| Fefllze = (2m) 72| Fe f] o (5.14)
Thus it extends to the unitary map from E¢ to L*(R). Moreover

L g
Fiezt( Ozz+V) _ ezt|k| Fi'

Proof. Since
—“A+V—z=(-A-2)+V,

by multiplying from the left and the right by Ry(z) resp. R(z)
Ro(z) = R(2) + Ro(2)VR(z) = R(z) + R(2)V Ro(2),
we obtain R(z) = Ry(2)(1 + VRy(z))™* and

R(X +i0)f = Ro(A £ i0) frtio
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using the notation
f-= 0+ VRy(2))f.

Since

= fario + VRo(A £140) frrio

and using again that the multiplication by V' is symmetric to get
(Ro(A +10) fxzio, f — frzio) = (Ro(A +40) frzio, VRo(A £ i0) fario) € R
and hence, using also (/5.5),

Im{R(A £40)f, f) =Tm{(Ry(\ £ 0) fr+i0, [
= Im<R0()\ + iO)fAiiOa f/\i’io>
1 p 2 R 2
:m(|f>\izo(\/X)| + |f)\i20(_\/x)| >

By Lemma 5.1} if f has compact support,

sl = [ (A4 V= —i0) . i

:l /OOO ilx%of,\ﬂo(ﬁ)ﬁ + |f/\ii0(_\r)‘)‘2)d/\

T
1 r 2
=5 . | frewio(t)|7dt
1 2
— 1P f I

This is a variant of Lemma We have to apply it with a sequence of
functions 7; converging to x(o,«). This implies identity (5.14). Next we
prove

FJ_F(—A — V) = m|k|2Fi

for f with compact support. Since
(—A+V =N f=(-A=-Nf+Vf
we have (taking limits)
(—A+V =N f =1+ VRy(A£i0)) (A =N\ f
and hence

(14+ VRyA+i0) (A +V = A)f = (A= \)f.
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We take a Fourier transform on both sides and evaluate at ++/A. The right
hand side vanishes:

Fl=a-nr|Evn =0
which implies the lefthand side also vanishes at ++v/\:
0=F((1+VRo(k* £i0)) "(=A+V —k*) f) (k)] _rvx

N [ YA [ o

hence
Fi(—A+V)f(k) = k*Fy f(k)

for f € §. Now consider

where f € D(—A + V). Then
g = e FL(—A + V) = K2Fy)e" A F = 0.

We obtain the the isometry for smooth and compactly supported functions
from Lemma [5.1] They are dense, and hence there is a unique extension to
a unitary map. O

[12.07.2017]
[14.07.2017]

Theorem 5.13. Ran(W,) = E° and
Fy:E°—L?

are unitary operators such that Fy Wy is the Fourier transform. The scat-

tering operator
S =WiWw_

is a unitary operator on L*(R). It satisfies
h(—A)S = Sh(—A)

for any bounded measurable function h.
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Proof. The range of W, is contained in E° since —A has no eigenvalues. We
claim

Fy oWy = F. (5.16)
Let f e S. Then

O d , o .
W,f — f _ / %ezt(fAJrV)e'LtAfdt _ f . / ezt(fA+V)Z~V€'LtAfdt.
—© —®

Thus 0
FW_f =F_f —lim UM B (VA ) dt

—0
and
O . . 0 . .
lim [ eME_ (VA f)dt = F_V1im [ de tCATATE £y
e—0 _ % e—0 —o0
= —F_ VRy(A—10)f
hence

F_-W_f(+VA) = (F_(1 + VRy(A — i0)) f)(£VA) = Ff(+VN).

Using (5.16) we can easily complete the proof. The Fourier transform is
surjective, hence also Fy|ge is surjective. It is also injective, and thus Wy is
surjective. Then by definition

M FSF1 = (P p W WEW_WEFE = FSF e
and the last equality follows. n
In physics one usually uses the Fourier representation of S,
FSF1=F FL
Theorem 5.14. For A > 0 let
u=uy — Ro(A Fi0)Vu

when
(—A4+V =XNu=0.
Then
Uy = Uiré\/j\ + U;é_ﬁ.
The map (v=,v7F) to (vy,vl) is denoted by X(N\). Then

(FSF)flvm = 2Ol vm

and () is unitary. It is called the scattering matriz at energy .
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Proof. Since (—A — A\)Ry(A Fi0)Vu = Vu, (—A — Nuy = 0 and there exist
vy, vl such that
Uy = v;&_ﬁ + 015\5.
Now let
’ELJ,_ - ’Uldi\/x + ’U:::5\/X
We claim that
(14 Ro(A —i0)V)u = uy

has a unique solution. This follows by the same argument as for 14+ V Ro(A +
i0) proven above. The same argument holds for the reverse sign and hence

uy = (1+ Ro(A—i0)V)(1 + Ro(A+i0)V) tu_.

Hence ¥()) is welldefined and bijective. It is an exercise to prove that it is
unitary.
We write (with d = 1)

<F+f|ﬁsd—17 E(A)a—|ﬁsd—1>ﬁsd—l
= (F(1+ VRy(A +10)) " f| yxga-r,
F(1+ Ro(A—i0)V)(1 + Ro(A + i0)V) " F a6 sxgi-1). /5501
= (F(1+ VRy(A = i0)V) 7" f| xga—1, U0 sxga—1)yxgas
— (P flopy1_lggr)
where we take the inner product with respect to L?(v/AS*!). Thus

Fo flyases = SOVE- f sges

for fe L?

comp*

]

We now turn to a more concrete representation. We consider solutions to
—u" +Vu=\u

with initial data

u(z) = eV

for © < —R and V supported in [—R, R]. On the right it decomposes as

u() = a(VA+i0)e ™V £ b(VA+i0)eV | 2> R,
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Since uy = vie VN 4 ufeVA = (1 4+ Ro(A T i0)V)u, we derive from the
above asymptotics of u at |z| = R that

u_(z) =ae”"VY  ui(x) = eV g petVAT,

Again the complex conjugate # is a solution, with the asymptotics

i = eV for ¢ < —-R, = eV 4 bem VM for 2 > R.

0 )-()
o ()-(0)

The Wronskian W = u#’ — w'@ is constant. On the left it is

= —iv )z vz
u U e e .
W= det (u’ u’) = det (—@'\/Xe_iﬁx i\/Xeiﬁx> = 2V,

N

Thus

and

and on the right it is

—iv Az vz — iV )z 7 —ivAz
det | e bR @R Abe ) < 2iAdlal — 9.
—ivVX(aem VAT — peVATY i\ (aeVAT — bemIVAT)

Hence
\a\Q =1+ ]b[Q.

We define the transmission coefficient 7" and the left/right coefficients
L, R as follows:

T\ +i0) = a(\ +1i0) 7,
LA +1i0) = a(A +i0)"'o(A +i0), R(A+i0) = —a(X +40)"'b(\ + i0),

and hence
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5.3 The case d > 2

This section serves as survey. The strategy is the same as for d = 1. There
are no complete proofs in this section.

Let d > 1, —A : H*(RY) — L*(R?) and, for A ¢ [0,0) we denote by
Ry () the operator
(=A =)' LA(RY) — H*(RY).
A Fourier transform translates Ry(A) to the multiplication operator
6 — (k2= N6 L2 — L2, .

If X € (0,0) then (]k|> — A)~! is not locally integrable and hence not a
distribution. This is the heart of the problem.
We define the space

o0
B={fe L’ |flemoy+ D, 2" /25,008, 0)} <©
j=0

with the corresponding norm denoted by ||z. We define
B* = {f € L : max{|[ f| 28,0, 5up 2772 | f| 225, (0,51 (0)) } < 0}
J

Lemma 5.15. B* is the dual of B by the natural pairing.
Lemma 5.16.

o]

lu(@r, )z2dzr < V2|uls

—00
and
Jul g+ < V2sup [[u(zy, )| 2

Theorem 5.17. Let 4 = 1odS*'. Then
lull+ < cllto]r2ga1)
The map L*(S*1Y) 5 1y — u € B* is injective with closed range.
Proof. Since
u = (2m)"4? / e g (k)dS (k)
§d—1

we see that u is bounded in terms of [dg|p1(se-1) < cfuofr2sa-1y. By a
partition of unity and rotation it suffices to consider

u(x) _ /BRdl eix-(k’Jrh(k/))aO(k/)dk/
1

where |Vh| <1 and estimate |ulz2(,;\p O

2]’71)'

103 [JuLy 26, 2017]



Theorem 5.18. Let M < R¢ be a C' hypersurface and K < M a compact
subset. Then
SR 3 v — v|g € L*(K)

extends by continuity to a surjective map from B to L*(K).

Proof. If 4 = 1ydS then

[Co, 0|k )| = [Cu, v)| < Jullp+]lv]5

and the restriction of the Fourier transform is bounded. By Theorem [5.17] it
is surjective since the adjoint is injective with closed range. O

If z ¢ [0,00) then z is in the resolvent set and there is a unique operator
Ro(z) : L* — H? which is a two sided inverse of —A — z and is given by the
Fourier multiplier (|k|> — 2)~1.

Lemma 5.19. Ry(2) extends continuously to [0, 00) from both sides as a map
from B to B*. We denote it again by Ro(\ £ 40).

Definition 5.20. Let A > 0. We call u € B* X outgoing /incoming if there
exists f € B such that u = Ro(\ £140)f.

Lemma 5.21. The following is equivalent.
e u is outgoing and incoming.
o u is in the closure of C§° in B*.
o f(k) =0 for |k|* = X

Let V : R — R be measurable. We will always assume that there exists
£ >0 and C > 0 such that

V(@) < CA+ )

We define
Ba ={u=v+Vw:vj,we B}

and
B ={f:[flz +IVf]|s < o}

Lemma 5.22. V defines a compact multplication operator from BA* to Ba.
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We now continue as in the one dimensional case to define R(z), extend it
to (0,00) from both sides, define the distorted Fourier transform by

Fy f(k) = FI(1 + VRo(|k|* +i0))~ f] (k)

and the scattering operator S. Again one studies the scattering operator
on the Fourier side, defines the unitary operators X(\) : L*(v/AS¥1) —
L2(VAS1).

One then studies solutions to
(A +V)(u+e*) = ANu + ™), \=k?
which is equivalent to the Lippmann Schwinger equation.
—Au+ Vu = u— Ve,
At least formally

X(0k) = Ok + U xga-r-

[14.07.2017]
[19.07.2017]

6 Symmetries, Groups and Spin

6.1 Quaternions, SU(2) and SO(3)

Definition 6.1. We fiz a basis in H = R* which we denote by 1, i, j and k.
We identify R* with C? with a basis 1, j by i = il, k = ij. The multiplication
is defined by
2= =k*=—1,ij=k,jk=1i,ki=j,ji = -k, kj = —i,ik = —j
resp. by B
(a+bj)(c+dj) = ac —bd + (ad + bc)j.

The complex conjugate is given by

a+bj =a—Dbj.
We define real and imaginary part as for complex numbers

1
Rex = i(x +z), Imz= 2—Z(x —I).
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The multiplication is associative but not commutative, and the distribu-
tive laws holds. We observe that

(a+bj)a+bj = |a]* + |b]* + (—ab + ba)j = |a|* + |b]?

and the inverse is given

1
= ————a+
a2 + b2

(a+bj)~* bj.

With this multiplication C? becomes a noncommutative field.

Lemma 6.2. The sphere S becomes a group with this multiplication. Con-
Jugation defines the inverse.

A topological group is a group with a topology such that group multi-
plication is continuous. A (connected) Lie group is a connected topological
group with a smooth structure. We will only consider groups of matrices
which are a smooth submanifold in the space of matrices.

Definition 6.3. Let G and H be (topological, smooth) groups. A map ¢ :
G — H is called a homomorphism if ¢(1) =1 and ¢(g192) = &(g1)d(g2) and
if ¢ is continuous resp. smooth. It is called a (linear, continuous, smooth)
representation if H is the group of invertible operators on a Hilbert space.
Two representations vy : G — GL(V) and yw : G — GL(W) are called
equivalent if there exists an invertible operator T € L(V,W) so that

yw(g)T =Ty (g), Vged.

A representation is called unitary if v(g) is always unitary. An equiva-
lence T is called unitary if the representations and T are unitary.

Lemma 6.4. Every continuous finite dimensional representation of a finite
dimensional Lie group is smooth.

Proof omitted, similar to the smoothness of the exponential map.
Definition 6.5. Let d > 1. We define
GL(d,C) = {U e C*?: det U # 0}
SL(d,C) = {U e C™:detU = 1}
U(d,C) = {U e C™ . U*U =1}
SU(d) = {U e C™ . U*U = 1,det(U) = 1}
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and
GL(d,R) = {O € R : det(O) # 0}

(d
SL(d,R) = {O € R : det(0) = 1}
O(d) = {0 e R : 070 =1}
SO(d) = {0 e R : 07O = 1,det(0) = 1}

which are smooth groups with the matriz multiplication. More generally we
define the corresponding groups (GL(H) ) for Hilbert spaces. If G is a group
then a homomorphism ¢ : G — GL(H) is called a representation.

R
R

The group S? acts in three different ways on R*:
L. (g,z) — g=

2. (g,x) > xg!

3. (9,7) — grg ™.

Only the second one gives an action of SU(2).
The last action commutes with conjugation and taking real parts

1 -1

_ 1 _ i _
Regrg™" = 5 (g9 "+ g'zg) = 95( + )9

As a consequence S? acts on R? which we identity with the quaternians with
real part 0.

Lemma 6.6. The group S* acts on C? by

1n:SxC*3(g,2) —> 29 teC?

In coordinate

S5 (a + bj) — (Z _ab) e SU(2).

It is an isomorphic homomorphism.
The map

Yo 1 S? x R? 3 (g, 210 + w97 + x3k) — g(217 + 295 + 13k)g "

can be written in coordinates as

a?+ v - —d? 2(ad + bc) 2(—ac + bd)
S* 5 (a+bitcj+dk) — —2(ad —cb)  a* -V +*—d? 2(ab + cd) € SO(3)
2(ac + bd) 2(cd — ab) a? = v -+ d?
is surjective and it maps two points gy, gs to the same matriz iff g1 = —go.
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Proof. We want to determine the matrix corresponding to = (a + bj). We
check
1(a+0bj) "t =a—1bj
and B
jla+bj)~" = j(@a—1bj) =aj +b.

It is not hard to see that this matrix is in SU(2), and that every element in
SU(2) can be represented in this fashion.

Let us work out the map v, : S — SO(3). Let a® +b* + ¢ + d* = 1.
Then

(@ —bi —cj —dk)i(a+bi+ ¢j +dk) =(ai + b+ ck — dj)(a + bi + ¢j + dk)
= (a®> +b* - — d*)i+2(cb — ad)j + 2(ac + bd)k

(a—bi —cj —dk)j(a+bi+cj+dk) =(aj — bk + c + di)(a + bi + cj + dk)
= 2(ad + be)i + (a* = b* + ¢ — d?)j + 2(cd — ab)k

(a —bi —cj —dk)k(a + bi+ c¢j + dk) =(ak + bj — ci + d)(a + bi + ¢j + dk)
= 2(—ac + bd)i + 2(ab + cd)j + (a* — b* — & + d*)k

It is immediate that these maps are homomorphisms. For SO(3) it is im-
mediate that g; and g are mapped to the same point if they are antipodal
points. An element of SO(3) is a rigid rotation and determined by an an-
gle and an oriented axis of rotation. The axis of rotation is given by the
eigenvector to the eigenvalue 1. Since

(1+Imz) 'Imz(l +Imz) = (1 + Imz) (1 +Ima)(1 + Imz) — 1 = Ima

it is given by the imaginary part. To determine the angle of rotation we
restrict to consider the action a + ib on j. Then

(a —ib)j(a + ib) = (a —ib)(aj — bk) = (a* — b*)j — 2abk

which is equal to j if and only if a = 1. It follows that 75(g) = 2(h) implies
g = *th. It is an exercise to deduce surjectivity. O]

Examples of representations.
1. SU(d) acts on C? in the natural fashion. Similarly SO(d) acts on R®.

2. SU(d) acts on the space of homogeneous complex polynomials of degree
m. Similarly SO(d) acts R? and on the space of harmonic polynomials
of degree m on R,
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3. Lie groups act on the tangent space at 1.

The case SU(1). The group SU(1) has dimension 1 and is isomorphic to
the rotations of the complex plane C.

There is an isomorphism SU(1) — SO(2). SO(2) is the group of roations
of the real two dimensional plane.

Let m = 0. Then SU(2) acts on the space W, of complex homogeneous
polynomials of degree m in two variables. A simple counting argument shows
that the dimension of W,, is m + 1.

SO(3) acts on the space V,, of harmonic polynomials of degree m. Its
dimension is 1 4+ 2m.

Definition 6.7. The Hopf map S® — S? defined by
H: (a+bj) — (2ab, |af* — [b]*)
maps x and y to the same point iff there exists v € C, |y| = 1 with y = .

It should be possible to relate the represention of SO(3) on V;,, and the
representation of SU(2) on Wy, via the Hopf map, but I did not manage to
do that.

[19.07.2017]
[21.07.2017)

6.2 Decomposition into irreducible representations

Definition 6.8. A representation v : G — GL(V') is called irreducible if
there is no nontrivial invariant subspace of V.

We consider compact topological groups G with a probability measure p
which is invariant under the group action. It is called Haar measure. This is
certainly true for every compact Lie group, and in particular for S* = SU(2)

and SO(3).

Lemma 6.9. Let v : G — GL(C?%). Then there exists a Hermitian inner
product so that 7y is unitary.

Proof. Let (.,.) be any Hermitian inner product on C?. We define
= [ () (e)0)dnto)
Then {(y(g)u,v(g)v) = {u,v) for all u,v and g. O
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Lemma 6.10 (Schur). If v and /' are irreducible representations on 'V resp
V' and if T € L(V,V") satisfies Ty(g) = v'(g)T for all g then either T is
bijective or T = 0.

Proof. Both the null space and the range of T" are invariant subspaces, and
then these are the only possibilities. O]

Lemma 6.11 (Schur 2). If in the previous lemma V = V' then T is a
multiple of the identity.

Proof. Every geometric eigenspace is invariant, and hence either {0} or V
since the representation is irreducible. O

Lemma 6.12. Let v and ~' be irreducible unitary representations on the
finite dimensional complex vector spaces V' resp. V'. Let v,w € V and
o w' e VL If

QL@@W#%&ﬂm%w%mmm¢0

then there exists L € L(V, V') invertible such that

V(9L =1Ir(g)  forally.
If v =~ then
/G<7(9)U7w><7(9)v',w'>du(9) = (dim V)" v, v')(w,w').  (6.1)
Proof. Let I € L(V, V') and
L= /Gv’(g)lv(g‘ )dp(g)-

Then
v'(9)L = Lv(g)

and hence L is either trivial or invertible. The second happens if the integral
is not zero: Choose [(w) = (w,v)v’, then

/ (g)v, wyv{y (g0, w'yvedulg) / (g Hw, vpv @' A (g7 w Hvidu(g)
/&v Ny yyedu(g) = L, uyy.
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If v = 4" we argue in the same fashion. Then L = A1 and

AdimV = tr L
= /G try(g)lv(9) " du(g)

=/ trldu(g) = tri.
G

Thus

trl
dim V

/G (9w, w) (g, whdpu(g) = {Lw,w") = Mw,w') = (w, w'),
where we choose [(w) = {(w,v)v so that trl = {(v,v’). The formula (6.1))
follows. u

Theorem 6.13. Let H be a separable complex vector space and v : G —
GL(H) a unitary representation. Then there exists at most countably many
closed finite dimensional invariant subspaces H; whose closure span H such
that 7|y, is irreducible.

Proof. We just prove the statement for finite dimensional H. To see that
there is irreducible representation on a subspace we pick an invariant sub-
space of minimal dimension. It carries a representation which is necessarely
irreducible. The orthogonal complement is invariant and we construct the
subspaces recursively. O

6.3 The Lie algebra of matrix groups

As a vector space a Lie algebra is the tangent space of a Lie group at 1. The
matrix multiplication turns the tangent space into a Lie algebra.

(The materials given here are classical theory for Lie algebra and can be
found in various classic references, e.g. Kristopher Tapp ”Matrix Groups for
Undergraduates”)

Lemma 6.14 (Lie algebra). 1. The tangent space gl(d; C) of GL(d;C) at
the identity is C4*¢. The tangent space sl(d;C) of SL(d;C) consists of
all matrices with trace 0. The tangent space u(d) of U(d) consists of
all matrices A € C¥*? with

A* = —A.

The tangent space su(d) is the intersection sl(d;C) n u(d).
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2. The tangent space gl(d;R) of GL(d;R) at the identity is R, The
tangent space sl(d;R) of SL(d;R) consists of all matrices with trace 0.
The tangent space o(d) of O(d) consists of all matrices A € C¥*? with

AT = A
The tangent space so(d) is the intersection sl(d;R) n o(d).
3. The Lie product is defined by
[A,B] = AB — BA.
It satisfies Jacobi identity
[A,[B,Cl] + [B, [C, Al + [C, [A, B]] = 0,
and the trace form

tr([A, B|C) = tr(B[A, C)).

4. The matriz exponential exp defines a map from the Lie algebra to the
group such that

exp(0) =1
%exp(tA) = Aexp(tA) = exp(tA)A
52
exp(sA) exp(tB) exp(—sA) exp(—tB) = AB - BA = [A, B]
0sot S0

(6.2)
exp(A)* = exp(A")

The matriz exponential maps a neighborhood of 0 of the Lie algebra to
a neighbirhood of 1 of the group.

5. If H,G are finite dimensional smooth matrix groups, if ¢ : G — H 1is
a smooth homomorphism then d¢(1) maps the tangent space at 1 in G
to the tangent space at 1 in H. It is an algebra homomorphism of the
Lie algebras. In particular

[6(A), 6(B)] = ¢([4, B]). (6.3)

6. The matriz exponentials exp : su(d) — SU(d) and exp : so(d) — SO(d)
are surjective.
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Proof. The group GL(d,C) is defined as {U : detU # 0}. The map to the
determinant is smooth and nondegenerate: The rank DdetU is always 1
since

d . d
et ) A A dt.
o dete det(A)— dt

Hence for any A € C¥*4, there exists € such that det(1 + tA) # 0 for |t| < e.
Ae gl(d,C).

Since if v : (—¢,€) — SL(d;C) differentiable with v(0) = 1, 7/(0) = A,
det(y(t)) = 1, then y(t) = 1 + tA + O(¢?) and

det(1+tA) =1+ ttr A+ O(t?) = det(y(t)) + O(t*) = 1 + O(t?),

the tangent space sl(d;C) consists of all matrices with trace 0. Similarly
U(d) is defined by
U*U =1

The derivative of U — U*U at U =1 is
A—- A"+ A

and the tangent space is {A : A* + A = 0}. The other relations are similar.
We verify the Jacobi identity for matrices:

A(BC—-CB)—(BC—-CB)A+B(CA-AC)—(CA-AC)B+C(AB—BA)—(AB—BA)C =
Also the calculation for the trace form is easy:
tr[ABC — BAC — BAC + BCA] = tr[A(BC) — (BC)A] =

The formulas for the matrix exponential follow from the definition. We
want to verify that the matrix exponential of an element of the Lie algebra
is an element of the Lie group. Since the Lie algebra is the tangent space at
1, we see that

dist(exp(ta), G) < C|t[*.

Since

exp(a H exp( —a

let g be the closest element in G to exp(=a). Then, with & = exp(+a)

m—

dist(exp(a), G) < dist(h™, ¢™) < Z 1B (h—g)g™ 7| < Cm/m?® — 0 as m — 0.
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The statement about diffeomorphism of neighborhoods of 0 resp 1 is a con-
sequence of the implicit or inverse function theorem with local coordinates
which we skip.

Formula follows from and the surjectivity of the matrix expo-
nential restricted to a neighborhood of 0 to a neighborhood of 1 which we
can interprete as a parmetrization of a neighborhood of 1.

We turn to surjectivity of the matrix exponential for SU(d) and SO(d).
Let U € SU(d). It is normal and hence it suffices to consider a diagonal
matrix with diagonal entries of modulus 1,

et L. 0 vy 0 ... 0
0 e* ... 0 0 iy ... O
U= ) . . | =exp . :
0 0 ... e 0 0 ... i\

The case of SO(d) is a bit more involved, but it is easy in d = 3 since elements
of SO(3) are rotations around an axis. O

Definition 6.15. A finite dimensional representation of a Lie algebra g is
an algebra homomorphism from g to gl(C?). It is called irreducible if there
1s no nontrivial invariant subspace.

The derivative of a representation at the identity is a homomorphism of
the Lie algebras. In particular the derivative of a representation at 1 is repre-
sentation of the Lie algebra. It is irreducible if and only if the representation
of the group is irreducible.

[21.07.2017]
[25.07.2017]

6.4 Irreducible representations of SU(2) and SO(3)

Consider an irreducible representation p of SU(2) < SL(2;C) on C% The
derivative defines a representation Dp : su(2) — C?*2. Tt is again irreducible.
The space su(2) has dimension three and Dp is uniquely described by giving
the image of ¢ times the Pauli matrices

(00 6o (o)

The Lie algebra si(2; C) of SL(2;C) has complex dimension 3 and a complex
basis given by the Pauli matrices. Thus it is the complexification of su(2) and
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every complex representation of p determines a representation of sl(2;C).
This representation is irreducible since already the restriction to su(2) is
irreducible. Vice versa: If we start with an irreducible complex representation
of sl(2;C) it restriction to su(2) is irreducible. The exponential defines an
irreducible representation of SU(2).

Any equivalence of representations of SU(2) leads to an equivalence of
representations of s/(2;C).

Theorem 6.16. The representations py, : SU(2) — L(W,,) are irreducible.
Fvery irreducible representation is equivalent to one of the py,.

Proof. We consider finite dimensional representations 7 of sl(2;C). We
choose the basis

(3 8) = (00 e ()

[H,E|=2E, [H,F|=-2F [E,F|=AH.

Then

The derivative of + at the identity is a representation p of the Lie alge-
bra p([H, E]|) = [p(H),p(E)]. Let p : sl(2;C) — L(V) be an irreducible
representation of this Lie algebra. We pick an eigenvector v of p(H) with
eigenvalue A\. Then

p(H)p(E)v = [p(H), p(E)]v + p(E)p(H)v = (A + 2)p(E)v.

p(H)p(F)v = [p(H), p(F)]v + p(F)p(H)v = (A = 2)p(F)v.

Let p(F)?*! be the smallest power so that p(F)/™'v = 0. Such a j exists since
all nonzero vectors p(F)v are eigenvectors to different eigenvalues, and hence
linearly independent. We recall that dim V' < o0. Let vy = p(F)v. It is an
eigenfunction of p(H) to the eigenvalue \g. Let v; = p(E) vy and let N + 1
be the first power so that p(E)¥*lvy = 0. Then {v;} span an invariant
subspace, and, since the representation is irreducible this subspace is the full
space. Moreover

Z(Ao +2j) = trp(H) = trp([E, F]) = tr(p(E)p(F) — p(F)p(E)) = 0,

that is, Ag(N + 1) + N(N + 1) = 0 and hence Ay = —N. So for every
N = 0 there is at most one irreducible representation of su(2) dimension
N + 1 with Ay = —N up to homomorphism. Let 7; be irreducible unitary
representations of SU(2) on the CV, j = 1,2. Then the representations
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p; = Dv;(1) are irreducible representations of su(2), which are unitarily
equivalent by the first part of the proof. Exponentiation shows that then
and v, are equivalent.

It remains to check that the representations +,, on the harmonic polyno-
mials of degree m are irreducible. We have

jom—j _ _m—2j_j_m—j
Y 0 2129 =z R1%2

z
and
Loty jom—j jm—i
g )a% = (21 + t22)" 2}
hence ' 4 ' '
p(H)zz" " = (m = 2j)z72"
P2y = g eyt
p(F)22y ™ = (m—j)={" 2y
Thus p(E)7 2} is a basis of W, and the representation is irreducible. O

Theorem 6.17. The representation 7y, : SO(3) — GL(V,,) are irreducible.
FEvery irreducible representation is equivalent to one of them.

Proof. Let v : SO(3) — O(d) be a irreducible representation of SO(3). It
defines a unitary representation on C? by a diagonal action on real and imag-
inary part. The canonical map vy : SU(2) — SO(3) induces an isomorphism
of the Lie algebras, and then a representation of sl(2,C) as above, which is
irreducible. Thus the associated representation of SU(2) is irreducible and
—1 € SU(2) is mapped to 1 € SO(3) and thus d has to be odd. Tracing
these maps shows that irreducible representations of the same dimension are
equivalent.

It is a little harder than for SU(2) to check that the representation 7,
are irreducible. O

The number (d — 1)/2 = m/2 is called the spin.

6.5 The spin

We begin with considering the symmetries of a single particle Hilbert space.
I did not find these considerations explicitly in the physics literature, but I
describe what seems to be the essence of the considerations in the physics
literature leading to single and multi particle Hilbert spaces.
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6.5.1 What is a single particle Hilbert space?

1. The Heisenberg commutation relations [id;, x| = id;), are central. We
have seen that a rigorous formulation consists in asking that the Heisen-
berg group acts unitarily on the Hilbert space such that (0,0,¢) is
mapped to the multiplication by ¢’ ( with A = 1 without loss of
generality). By the Stone-von Neumann theorem we know all such
irreducible representations.

2. The Euclidean space R? is invariant under rigid rotations resp. the
action of SO(3), and hence also of SU(2). Every element of GL(d)

defines automorphism of H:
g: (2, k,t) — (gz, 97"k, t).

In particular we obtain an action of g € SU(2) on H?. This defines a
homomorphism from SU(2) into the automorphisms of H3.

3. This actions allows to define a semidirect product of G ®, H which
makes G x H group by

(91, h1) * (g2, ha) = (9192, hav(g1) o).
It is not difficult to check that this defines a group.

4. A single particle Hilbert space is an irreducible unitary representation
of SU(2) ®, H? satisfying the Heisenberg commutation relations.

5. Up to equivalence the irreducible representations are given by H =
L*(R3; C%) with
Y(9)¥(x) = vt (r0(9)z)
where v : SU(2) — SO(3).

6.5.2 What is a multiparticle Hilbert space?

A multiparticle Hilbert space is the direct product of the corresponding single
particle Hilbert space. For two particle

L2(R3;Cd1) ®L2<R3;Cd2) _ L2(R6;Cd1><d2).

The representation of SU(2) on C#*4 is reducible in general!
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6.5.3 What is the Hilbert space for identical particles?

For identical particles exchanging identical particles (which means the action
of the symmetry group ¢ (x1, ji, T2, jo) — ¥(x2, j2, x1, j1) where ji. describes
the spin variable) leads to a multiplication by e for some v € R. It is not
hard to see that v does not depend on v, and, since replacing twice we get
the identity we have €7 = +1.

Theorem 6.18 (Spin-statistic). If d/2 ¢ Z we have €' = —1 and particles
are called Fermions. If d/2 € 7 we have ¢ = 1 and particles are called
Bosons.

According to Weinberg this theorem can only be proven for field theory.
It seems to me however that the arguments in field theory directly work in
our setting here.

Electrons, protons and neutrons have spin 1/2, photon have spin 1.

Fermions satisfy the Pauli exclusion principle: Two electrons cannot be
in the same state since exchanging them would not change the wave function,
but, being Fermions, it has to —1 times the wave function.

Now we would have to go back and discuss the hydrogen atom, other
atoms, electrons in an electric and magnetic field, allowing interaction with
the spin, modify the Hamiltonians for atoms to allow for interaction of the
spin, discuss larger atoms and also the nucleus.

Next one should discuss the interaction of atoms with light and statistical
physics of quantum systems leading to describing black body radiation.

A Appendix

A.1 Gaussian integrals

The theorem of Fubini: Suppose that f is integrable on R™*"2, Then xy —
f(z1,x2) is integrable for almost every z1, 21 — [ f(x1,22)dL™ is integrable,
and
/ f(l‘l,flfz)dﬁnz(l'g)dﬁnl(l'l) = f($1,l’2)d£nl+n2(l'1,$2).
R™1 JR72 Rn
We use this to evaluate certain integrals and to determine the volume of the
unit ball, with d£" the Lebesgue measure. First

/e"r'QdE"(x):/ 6_9“2/ e“xz‘QdE”Q(xg)dﬁm(xl)
n R™1 R™2
R™1

R"™2
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and the integral over the Gaussian in R™*"2 is the product of the integrals
of Gaussians in R"* and R™. Recursively we see that the integral over the
Gaussian in R” is the nth power of the one dimensional integral over the
Gaussian. We can also use the theorem of Fubini in a different fashion:

‘/ﬁ6‘”2dﬁ”@»:=£”+%{@aw:(><t:ze-xP»
= /OO Lr{z e P > dt = /1 E"(B(_lnt)%(()))dt
=£”(Bl(0))/1(—lnt)3dt

n+2

L7 (By(0)T ("

where I' is the Gamma function. Hence

2 a2 2 n
/e“dx:m /elxd:v—ﬁ, e 1 dy = 72,
R? R

R

D(1/2) = 20(3/2) = /7

and

7.(.n/2

L"(B1(0)) = T((n +2)/2)

A.2 Holomorphic functions

Definition A.1. Let U = C = R? be open. We call f: U — C holomorphic
if it 1s differentiable at every point, or if the Jacobi matrix is a multiple of a
rotation at every point.

A 2 x 2 matrix is a multiple of a rotation iff is has the form

a b
(4 0) = Ve (VR ).
—b a Vaz+b2  Va2+b2

This is equivalent to the existence of the limit

lim f(2) — f(20) eC

220 Z— 20

which the definition of complex differentiability.
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Theorem A.2. Holomorphic functions are analytic. Their complex Taylor
series converge in a neighborhood of every points.

Let v be an oriented piecewise C* curve in U and assume that f is holo-
morphic in U. Then we define the complex line integral by

b
/ f(2)dz = / FO/ ()Y (1)t

for a parametrization of . The result is independent of ~.

Theorem A.3 (Cauchy integral theorem). Suppose that U is simply con-
nected and v is closed. Then

/Wf(z)dz =0

Sketch of the proof: Assuming that f € C! one obtains the claim by an
application of the divergence theorem.

We also need a simple version of the residue theorem. Let V < V < U
be open so that V is compact, with a piecewise C'! boundary. Then there is
a unique path v which runs around V' so that V' always lies on the left. Let
2o € V and assume that f is holomorphic in V\{z} and that is has a Laurent
expansion

Theorem A.4. Then
/fdz = 2mia_y
-

Sketch of proof: Using Cauchy’s integral theorem the integral is the same
as the integral over a small circle around zy. One checks that

2m .
/ (z — 20)"dz = z/ e dy = { O ?f n# -l
2B (o) 0 2mi  ifn=—1.
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