

Prof. Dr. Herbert Koch Dr. Xian Liao Summer Term 2017

Partial Differential Equations and Modelling

Sheet Nr. 10

Due: 07.07.2017

Exercise 1

Consider the ordinary differential equation

$$P(u) = \frac{d}{dx}u + \tanh(x)u = f, \quad x \in \mathbb{R}.$$

Determine the null space of P and prove that for every f there is a solution $u \in H^1$. Prove that

$$Q(u) = \frac{d}{dx}u - \tanh(x)u = f$$

has at most one solution in H^1 and determine for which $f \in L^2$ the equation is solvable. Can you generalize the results to more general equations

$$\frac{d}{dx}u + h(x)u = f?$$

Hint: Write down a formula for the general solution.

Exercise 2

Consider the ordinary differential equation

 $u_{xx} + u = f$

and consider a uniformly convex C^3 function h with

$$h'' \ge 1, \qquad |h^{(3)}| \le \frac{1}{10}h''.$$

Prove

$$\|e^h u\|_{L^2} \le 2\|e^h f\|_{L^2}$$

for $u \in H^2$ with compact support.

Hint: Derive an equation for $v = e^{h}u$, multiply by h'v' and integrate.

Exercise 3

The strong unique continuation property states that if a solution to a linear pde in a connected open set U vanishes in an open subset, then it vanishes in U. In which cases does the strong unique continuation property hold?

- a) $\Delta u = Vu$, V bounded.
- b) The heat equation $u_t \Delta u = 0$.
- c) The wave equation $u_{tt} \Delta u = 0$.

Exercise 4

Find all solutions to

$$-u_{xx} - \delta u = z^2 u$$

with $u = c_{\pm}e^{iz|x|}$ for $x \neq 0$: Pay attention that the product δu can not be well-defined if u is irregular enough, e.g. u is discontinuous at 0. Prove that the operator

$$H^1 \ni u \to -u_{xx} - \delta u \in H^{-1}$$

is well defined. Here δ is the Dirac measure and $z \in \mathbb{C}$.