

Prof. Dr. Herbert Koch Dr. Xian Liao Summer Term 2017

Partial Differential Equations and Modelling

Sheet Nr.4

Due: 19.05.2017

Exercise 1

Let $\mu = (2\pi)^{-\frac{1}{2}}e^{-x^2/2}dx$. Prove that the orthogonal polynomials are the Hermite polynomials. Determine the a_n and b_n .

Exercise 2

Consider the linear Schrödinger equation

$$i\partial_t u + \Delta u = 0,$$
 $u(t = 0, x) = \phi(x), \quad x \in \mathbb{R}^d.$

Let $\phi \in \mathcal{S}(\mathbb{R}^d)$. Find a solution as a convolution with ϕ by first applying a Fourier transform in x.

Exercise 3

Find examples of operators

- a) $T \in L(H)$, so that $\langle Tx, x \rangle \in [0, \infty)$ for all $x \in H$ but T is not normal.
- b) Let $K \subset \mathbb{C}$ be compact. Find *T* so that *K* is its spectrum.
- c) Let (λ_j) a summable sequence of positive numbers and (z_j) a bounded sequence of pairwise disjoint complex numbers. Find T and a cyclic vector so that $\mu = \sum_{j=1}^{\infty} \lambda_j \delta_{z_j}$.

Exercise 4

Prove the following statements.

- a) Characterize the $n \times n$ matrices for which there exists a cyclic vector.
- b) Let *T* be selfadjoint. Prove that there exist T_n selfadjoint, $T_n \to T$ in L(H) so that there exists a cyclic vector ϕ_n of T_n and such that the measure μ_n is a sum of Dirac measures.