Prof. Dr. Herbert Koch Dr. Xian Liao Summer Term 2017

Partial Differential Equations and Modelling

Sheet Nr.3 Due: 12.05.2017

Exercise 1

Let $H = l^2(\mathbb{Z})$ be the set of square summable sequences. Let (e_j) be the standard basis and define $T(e_i) = e_{i+1}$. Determine the spectrum of T.

Exercise 2

Let $L^2(\mathbb{S}^1)$ be the set of the square integrable 2π periodic functions. Let H be the span of $\{e^{ikx}, k \geq 0\}$ and let Π be the orthogonal projection from $L^2(\mathbb{S}^1)$ to H. Given a bounded function h in H we define the Hankel operator T_h as

$$H \ni f \to T_h f = \Pi(f\bar{h}).$$

- a) Determine the matrix corresponding to T_h in the basis (e^{ikx}) .
- b) Determine the spectrum and eigenfunctions of $T_{e^{ix}}$.

Exercise 3

Let

$$L\phi = -\Delta\phi + |x|^2\phi = f$$

for $\phi \in \mathcal{S}(\mathbb{R}^d)$. Prove that there exists c(d) such that

$$\|\phi\|_{L^{2}}^{2} + \||x|\phi\|_{L^{2}}^{2} + \sum_{j=1}^{d} \|\partial_{j}\phi\|_{L^{2}}^{2} + \||x|^{2}\phi\|_{L^{2}}^{2} + \sum_{i,j=1}^{d} \|x_{i}\partial_{j}\phi\|_{L^{2}}^{2} + \sum_{i,j=1}^{d} \|\partial_{ij}\phi\|_{L^{2}}^{2} \le c(d)\|f\|_{L^{2}}^{2}.$$

Hint: Use $L = \sum_{j=1}^{d} (-\partial_{x_j} + x_j)(\partial_{x_j} + x_j) + d$ and integrate by parts first in $\langle L\phi, \phi \rangle$.

Exercise 4

Define a suitable Hilbert space H which contains the L^2 functions such that their norms on the lefthand side of the estimate in Exercise 3 are finite. Use this estimate to prove that there exists an inverse operator $L^{-1}:L^2\to H$. Determine the spectrum and the eigenfunctions of L^{-1} .

Hint: This problem requires knowledge of functional analysis. Prove that L defines an injective map with closed range from H to L^2 . Use the Lemma of Lax-Milgram to prove that given $f \in L^2$ there is a unique weak solution to Lu = f with $u, \nabla u, xu$ in L^2 . Argue that $u \in H$.

Use the Kolmogorov criterion to see that the closure of the unit ball in H is compact in L^2 . Thus L^{-1} is a compact operator. We have seen in Exercise Sheet Nr. 2 that Hermite functions are eigenfunctions. Use the compactness to argue that the span of the Hermite functions is dense.