

Prof. Dr. Herbert Koch Dr. Xian Liao Summer Term 2017

Partial Differential Equations and Modelling

Sheet Nr.2

Due: 05.05.2017

Exercise 1

Prove the following statement: Every function f in $L^2(\mathbb{R}^d; \mathbb{C})$ can be written as

$$f = f_1 + f_{-1} + f_i + f_{-i}$$

so that

$$||f||_{L^2}^2 = ||f_1||_{L^2}^2 + ||f_{-1}||_{L^2}^2 + ||f_i||_{L^2}^2 + ||f_{-i}||_{L^2}^2$$

and

$$\hat{f}_1 = f_1, \quad \hat{f}_{-1} = -f_{-1}, \quad \hat{f}_i = if_i, \qquad \hat{f}_{-i} = -if_{-i},$$

The decomposition is unique.

Hint: Consider the even part and odd part of the function f separately.

Exercise 2

The harmonic oscillator is defined by

$$L\psi = -\Delta\psi + |x|^2\psi, \quad x \in \mathbb{R}^d$$

for Schwartz functions.

• Prove that

$$L\psi = -\sum_{j=1}^{d} (\partial_j - x_j)(\partial_j + x_j)\psi + d\psi.$$

Here, we use the convention that $\partial_j x_j \psi = \partial_j (x_j \psi) = \psi + x_j \partial_j \psi$.

• Find a formula for the commutator

$$\left[\frac{1}{2}(\partial_j + x_j), \frac{1}{2}(\partial_j - x_j)\right]\psi := \left(\frac{1}{2}(\partial_j + x_j)\right)\left(\frac{1}{2}(\partial_j - x_j)\right)\psi - \left(\frac{1}{2}(\partial_j - x_j)\right)\left(\frac{1}{2}(\partial_j + x_j)\right)\psi.$$

• Compute Lh_{α} , where $h_{\alpha} = \left[\frac{1}{2}(x-\partial)\right]^{\alpha} e^{-\frac{|x|^2}{2}}$ for the multiindex α . Please start with the case d = 1.

Exercise 3

This exercise requires some knowledge about the Laplace operator and its fundamental solution.

Let d = 3 and

$$g = \frac{1}{3|B_1(0)|} |x|^{-1} e^{-|x|}$$

where $|B_1(0)|$ is the volume of the unit ball.

• Prove that

$$g - \Delta g = \delta_0.$$

Hint: *g* is a radial function and there is an easy way to calculate $-\Delta g$ away from the origin.

• Derive from $g - \Delta g = \delta_0$ an integral formula for a solution to

$$u - \Delta u = f.$$

• Derive from $g - \Delta g = \delta_0$ the Fourier transform of g.

Exercise 4

Let $p = p(x) = p(x_1, \dots, x_d)$ be a polynomial in d variables. Let

p(D)u

be the operator with constant coefficients obtained by replacing x_j in the argument by $\frac{1}{i}\partial_j$, e.g. if $p(x) = Cx_1$ then $p(D)u = C\frac{1}{i}\partial_1 u$.

Prove that

$$(\widehat{p(D)u})(k) = p(k)\widehat{u}(k).$$

and

 $p(D)u = (p(D)\delta_0) * u.$

We then identify p(D) with the distribution $p(D)\delta_0$.