

Summer Term 2017

Partial Differential Equations and Modelling

Sheet Nr.1

Dr. Xian Liao

Prof. Dr. Herbert Koch

Due: 28.04.2017

Exercise 1

Let $f \in L^1(\mathbb{R}^d; \mathbb{C})$ have compact support. Prove that the Fourier transform is the restriction of a holomorphic function on \mathbb{C}^d .

Hint: Prove that the formula for the Fourier transform make sense if we replace $k \in \mathbb{R}^d$ by $z \in \mathbb{C}^d$. Prove that the extension $\hat{f}(z)$ with z = k + iw satisfies the Cauchy-Riemann equations

$$\partial_{k_j} \operatorname{Re} \hat{f} = \partial_{w_j} \operatorname{Im} \hat{f}$$

 $\partial_{w_j} \operatorname{Re} \hat{f} = -\partial_{k_j} \operatorname{Im} \hat{f}$

Exercise 2

We want to compute the Fourier transform of $f(x) = e^{-\alpha x^2}$ where $x \in \mathbb{R}$ and $\alpha = a + ib$ with a > 0 and $b \in \mathbb{R}$.

- Prove that $f \in \mathcal{S}(\mathbb{R})$.
- Let

$$I(a+ib) = \int_{\mathbb{R}} e^{-(a+ib)x^2} dx, \quad a > 0, \quad b \in \mathbb{R}.$$

Compute $\partial_b[\sqrt{a+ib}I(a+ib)]$ and $\partial_a[\sqrt{a+ib}I(a+ib)]$. Deduce a formula for I(a+ib).

• Find a differential equation for \hat{f} and use it to compute \hat{f} .

Exercise 3

Let *A* be an invertible $d \times d$ matrix and let $f \in L^1(\mathbb{R}^d)$. Express $\mathcal{F}(f \circ A)$ in terms of \hat{f} . Suppose that *B* is a positive definite $d \times d$ matrix. Compute the Fourier transform of $f(x) = e^{-x^t Bx}$.

Exercise 4

Let $h \in \mathbb{R}^d$. Express the Fourier transform of $x \to f(x+h)$ in terms of the Fourier transform of f.