Real and Harmonic Analysis, Problem set 11

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

universität**bonn**

Due on Tuesday, 2016-07-19 Please submit your solutions in groups of two

Problem 1 (Restriction theorem in dimension 2). Let $I \subset \mathbb{R}$ be a compact interval and $\phi : I \to \mathbb{R}$ a C^2 function with $\phi''(x) \ge \lambda > 0$ for all $x \in I$. Let also $F \in L^p(I)$, $1 , and define a measure <math>\nu$ on \mathbb{R}^2 by

$$\int f d\nu = \int_{I} f(x, \phi(x)) F(x) dx.$$

- (a) Show that the convolution product measure $\nu * \nu$ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2 and find a formula for its density G in terms of F and ϕ .
- (b) Show that, for every $1 < r < \infty$,

$$||G||_r^r \lesssim \int_{I \times I} |F(t)|^r |F(s)|^r |s-t|^{-(r-1)} dt \, ds$$

- (c) Show that $||G||_{L^r(\mathbb{R}^2)} \lesssim ||F||_{L^p(I)}^2$ if 3/r = 2/p + 1.
- (d) Show that $\|\hat{\nu}\|_{L^q(\mathbb{R}^2)} \lesssim \|F\|_{L^p(I)}$ if q = 3p'.

Problem 2 (Knapp example). Let σ be the surface measure on the unit sphere in \mathbb{R}^d and let $1 < p, q < \infty$. Suppose that

 $\|f * \sigma\|_{L^{q,\infty}(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)}$ for all $f \in L^p(\mathbb{R}^d)$.

- (a) Show that $q \ge p$.
- (b) Show that $1/q \ge d/p (d-1)$.

Suppose now that

$$\|\widehat{fd\sigma}\|_{L^{q,\infty}(\mathbb{R}^d)} \lesssim \|f\|_{L^p(d\sigma)} \text{ for all } f \in \mathcal{S}(\mathbb{R}^d).$$

(c) Show that $q \ge \frac{d+1}{d-1}p'$.

Hint: in parts (b) and (c) consider functions f that are (basically) characteristic functions of balls of small radius δ . Estimate the size of the sets on which the function on the left-hand side is almost maximal and let $\delta \to 0$.