Real and Harmonic Analysis, Problem set 10

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016 universität**bonn**

Due on Tuesday, 2016-07-12 Problems marked as oral will not be graded. Please submit your solutions in groups of two

Problem 1. Let $\Phi \in C^k[a, b]$ with $k \ge 2$. Assume that $|\Phi^{(k)}| \ge 1$ everywhere on the interval [a, b]. Show that

$$\Big|\int_{a}^{b} e^{i\lambda\Phi(x)} dx\Big| \le c_k \lambda^{-1/k}$$

with a constant c_k that does not depend on a, b, Φ .

Problem 2. Consider the polynomial curve $\gamma(t) = (t, t^k), k \ge 2$, and a smooth function with compact support $\psi \in \mathcal{D}(\mathbb{R})$. Define a measure μ by

$$\int_{\mathbb{R}^2} f d\mu = \int_{\mathbb{R}} f(\gamma(t))\psi(t)dt.$$

- (a) Show that $|\hat{\mu}(\xi)| = O(|\xi|^{-1/k}).$
- (b) Suppose that $\psi(0) = 0$ and $k \ge 3$. Show that

$$|\widehat{\mu}(0,\xi_2)| = O(|\xi_2|^{-1/(k-1)}).$$

(c) Suppose that $\psi(0) = 0$ and k = 2. Show that

$$|\widehat{\mu}(0,\xi_2)| = O(|\xi_2|^{-1} \log |\xi_2|)$$
 for large ξ_2 .

(d) Show that the decay rate in part (a) is optimal when $\psi(0) \neq 0$ in the sense that $|\hat{\mu}(0,\xi_2)| > c|\xi_2|^{-1/k}$ for some c > 0 and sufficiently large ξ_2 .

Problem 3 (oral). Let P be a real polynomial on \mathbb{R}^d and k a homogeneous function of degree -d that satisfies the cancellation condition $\int_{S^{d-1}} k = 0$.

(a) Show that the limit

$$K(\phi) := \lim_{\epsilon \to 0} \int_{|x| > \epsilon} e^{iP(x)} k(x)\phi(x) dx$$

exists for every Schwartz function $\phi \in \mathcal{S}(\mathbb{R}^d)$ and defines a tempered distribution (the principal value of $e^{iP}k$).

(b) For d = 1 show that the Fourier transform \hat{K} is a bounded function.