Real and Harmonic Analysis, Problem set 9

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

Due on Tuesday, 2016-07-05

Problems marked as oral will not be graded. Please submit your solutions in groups of two

Problem 1. Here f^* denotes the non-increasing rearrangement (say, on \mathbb{R}^n) and $f_+ = \max(f, 0)$ the positive part of a function.

- (a) Show that $(f-t)_{+}^{*} = (f^{*}-t)_{+}$ for positive functions f.
- (b) Show that the non-increasing rearrangement is L^p -contractive in the sense that $||f^* g^*||_p \le ||f g||_p$, $1 \le p \le \infty$. Hint: use the following version of the layer cake representation:

$$|f - g|^p = p \int_0^\infty (f - t)_+^{p-1} 1_{g \le t} + (g - t)_+^{p-1} 1_{f \le t} dt, \quad 1 \le p < \infty.$$

Problem 2 (Helly's selection principle). (a) Let $f:[0,\infty)\to[0,C]$ be a non-increasing function. Show that f has at most countably many discontinuities.

(b) Let $f_n:[0,\infty)\to[0,C]$ be a sequence of (uniformly bounded) non-increasing functions. Show that there exists a subsequence f_{n_k} that converges pointwise everywhere.

Problem 3 (oral). Let K be a CZ distribution on \mathbb{R}^d , that is, it coincides with a function k away from the origin, and the function k satisfies

$$|\partial^{\alpha} k(x)| \lesssim_{\alpha} |x|^{-d-|\alpha|}$$
 for all α , (1)

$$\exists n \ge 1: \sup_{\phi \in B_n, r > 0} |K(\phi_r)| < \infty, \tag{2}$$

where B_n is the set of all smooth functions ϕ supported in the unit ball with $\sup_{x,|\alpha|\leq n} |\partial^{\alpha}\phi(x)| \leq 1$ and $\phi_r(x) = \phi(rx)$.

- (a) Show that the distribution $f \mapsto K(f(x)x_i)$ coincides with the function x_ik for every $j = 1, \ldots, d$.
- (b) Show that the cancellation condition (2) in fact holds with n=1 (assuming that it holds for some $n \geq 1$).

Problem 4 (oral). Let $X_0 \subset \mathbb{R}^d$ be a hyperplane that does not contain the origin, X_+ the open half-space with boundary X_0 that contains the origin, and X_- the complementary open half-space. Denote by σ the reflection on X_0 . For a non-negative function f on \mathbb{R}^d , the polarization at X_0 is the function

$$f^{\sigma}(x) = \begin{cases} \max(f(x), f(\sigma x)), & x \in X_{+} \cup X_{0}, \\ \min(f(x), f(\sigma x)), & x \in X_{-} \cup X_{0} \end{cases}$$

(note that both lines are equal for $x \in X_0$).

- (a) Suppose that the function f has modulus of continuity ω , that is, $\omega : [0, \infty) \to [0, \infty]$ is a non-decreasing subadditive function and $|f(x) f(y)| \le \omega(|x y|)$ for all $x, y \in \mathbb{R}^d$. Show that f^{σ} also has modulus of continuity ω .
- (b) Show that

$$\int f^{\sigma} g^{\sigma} \ge \int f g$$

with equality if and only if $(f(x) - f(\sigma x))(g(x) - g(\sigma x)) \ge 0$ for a.e. $x \in \mathbb{R}^d$.

See "A short course on rearrangement inequalities" by Burchard (available online) for a proof of the special case of the Riesz rearrangement inequality that is used in the HLS inequality using polarization.

Problem 5 (*). Let f be a non-negative function on \mathbb{R}^d with modulus of continuity ω . It is true that the Steiner symmetrization Sf (that is, the radial non-increasing rearrangement in the last coordinate) also has modulus of continuity ω ?