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This week you are asked to verify some properties of Hermite polynomials that will be useful in next week’s
lectures (June 14 and 16).

Problem 1 (Diagonalization of the Fourier transform). (a) Show that space of all polynomials is dense in

H := L2(R, e−x2/2dx). Hint: let f ∈ H be a function that is orthogonal to all polynomials in this space.

Show that the Fourier transform of the function f(x)e−x2/2 vanishes.

(b) The Hermite polynomials are defined by

Hm(x) = (−1)mex
2/2 dm

dxm
e−x2/2.

Show the recursive relations Hn+1(x)
′ = (n+1)Hn(x) and Hn+1(x) = xHn(x)−nHn−1(x). In particular,

Hm is a polynomial of degree m with leading coefficient 1, so that the functions Hm form a basis of the
space of all polynomials in one variable.

(c) Let hm(x) := e−x2/4Hm(x). Show that

〈hm, hn〉L2(R) = 〈Hm, Hn〉H = δmn

√
2πn!.

(d) Prove the generating function identity

e−t2/2+xt =
∞∑

m=0

Hm(x)
tm

m!

with uniform convergence for x, t in compact subsets of C and, for fixed t ∈ C, with convergence in H.

(e) Let km(x) := hm(
√
4πx). Show that these functions are eigenvectors of the Fourier transform: k̂m =

(−i)mkm. Hint: consider the Fourier transform of e−t2/2+xte−x2/4.

The existence of this diagonalization is not too surprising, because the Fourier transform is a unitary
operator whose fourth power is the identity, hence its spectrum is contained in {±1,±i}. By the spectral
theorem L2(R) splits into the orthogonal sum of the corresponding 4 subspaces, on each of which the
Fourier transform is a multiple of the identity.


