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Problem 1. (a) Show that a distribution on R? that is homogeneous of degree —d and supported at 0 is
a multiple of the Dirac delta distribution (you may use the characterization of distributions with point
support).

(b) Let d > 3 and ¢(f) = [pa f(2)|z|~*"2dz, this is a homogeneous distribution of degree —d + 2. Show that
the distribution .
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is homogeneous of degree —d and supported at 0.

(c) Let d =2 and ¢(f) = [pa f(x)log|z|dx, this is a tempered distribution. Show that ¢(f,) = ¢(f) provided
that [ f=0. Show that the distribution
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is homogeneous of degree —2 and supported at 0.

(d) Show that the distributions ¢ i=19;

evaluating them explicitly on radial Schwartz functions of the form f(x) = g(|z|?) (or f(z) = g(|z]) if you
prefer).

9?¢ from parts (b) and (c) are in fact non-zero multiples of &y by

Problem 2 (Yukawa potential). (a) Let o be the surface measure on the unit sphere S? C R3. Show that
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Hint: write this integral in angular coordinates.

(b) Compute the Fourier transform of the conjugate Poisson kernel 77> (this is a function in one variable
r € R). Hint: use part (c) of Problem 1 in Problem set 4, where it has been proved that the Fourier
transform of the Poisson kernel ;= equals e —2mle],

(c) Show that the Fourier transform of the function (14 |z|?)~" on R? is a muliple of e=27¢l/|¢|. Hint: write
the integral defining the Fourier transform in spherical coordinates.

Problem 3 (oral). Let 1) € S(R?)* be the distribution given by
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Verify that this is indeed a tempered distribution and compute ¥ (), where f%(x) = a=?f(x/a). Deduce from
this computation that the Fourier transform 1,& is not equal to a bounded function in a neighborhood of zero.
Use this fact and the characterization of distributions with point support to show that any tempered distribution
that agrees with |2/~ away from the origin has unbounded Fourier transform.



