Real and Harmonic Analysis, Problem set 5

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

Due on Thursday, 2016-06-02 Please submit your solutions in groups of two

- **Problem 1.** (a) Let $\eta \in \mathcal{D}$ be a function such that $\eta \equiv 1$ in a neighborhood of 0 and let $\eta_k(x) = \eta(x/k)$. Show that for every $f \in \mathcal{S}$ we have $\eta_k f \to f$ in \mathcal{S} as $k \to \infty$. In particular, \mathcal{D} is dense in \mathcal{S} .
 - (b) Let $F \in \mathcal{D}^*$ be a distribution. Show that F extends to a tempered distribution if and only if there exist $N \in \mathbb{Z}$ and $A \ge 0$ such that

$$|F(\phi)| \le AR^N \sup_{|\alpha| \le N} \sup_{x} |\partial^{\alpha} \phi(x)|$$

for all $R \ge 1$ and $\phi \in \mathcal{D}$ supported in B(0, R).

(c) Let $F \in \mathcal{D}(\mathbb{R}^d)^*$ be a homogeneous distribution of degree $\lambda \in \mathbb{R}$, that is, $F_a = a^{\lambda} F$ for all a > 0, where $F_a(\phi) = F(\phi^a), \phi \in \mathcal{D}$, and $\phi^a(x) = a^{-d}\phi(x/a)$. Show that F extends to a tempered distribution.

Problem 2. Let $F \in \mathcal{D}^*$ be a distribution supported in a compact set K. By Problem 1 it extends to a tempered distribution.

- (a) For a C^{∞} function f on \mathbb{R}^d let $F(f) := F(\eta f)$, where $\eta \in \mathcal{D}$ is a function with $\eta|_K \equiv 1$. Show that this definition does not depend on η and coincides on S with the continuous extension of F constructed in Problem 1.
- (b) Let $f \in S$ be a Schwartz function. Show that F * f, which was defined in class, is also a Schwartz function.
- (c) Show that \widehat{F} coincides as a distribution with the function $\xi \mapsto F(e^{-i\xi})$, where the right-hand side is defined as in part (a). (Hint: insert factors 2π where needed to conform with your favorite normalization of the Fourier transform)