## Real and Harmonic Analysis, Problem set 4

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016



## Due on Tuesday, 2016-05-24

May 26 is a holiday, so there are no oral problems this time. Please submit your solutions in groups of two

**Problem 1** (Common Fourier transforms). Express the Fourier transform of a function of the form f(x/t) in terms of  $\hat{f}$ . Compute the Fourier transforms of the following functions on  $\mathbb{R}$ .

- (a)  $f(x) = 1_{[-t,t]}(x), t > 0$   $(D_R = \hat{f}$  is the Dirichlet kernel)
- (b)  $f(x) = \max(1 |x|/t, 0), t > 0$  ( $F_R = \hat{f}$  is the Fejér kernel)
- (c)  $f(x) = \frac{1}{t} \frac{1}{1+(x/t)^2}$ , t > 0 (f is the Poisson kernel). Hint: use the Cauchy integral formula for the contour consisting of the line segment [-R, R] and a half-circle.
- (d)  $f(x) = \operatorname{sech}(x) = \frac{2}{e^x + e^{-x}}$ . Hint: use the Cauchy integral formula for a rectangle of height  $\pi$  and large width.

Problem 2 (Convergence of Fourier integrals). Notice that

$$\widehat{D_R * f}(\xi) = \mathbb{1}_{[-R,R]}(\xi)\widehat{f}(\xi)$$

and

$$\widetilde{F}_R * \widetilde{f}(\xi) = \max(1 - |\xi|/R, 0) \widetilde{f}(\xi)$$

holds for all Schwartz functions f.

- (a) Show that the operators  $f \mapsto D_R * f$ , R > 0, are uniformly bounded on  $L^p(\mathbb{R})$ , 1 .
- (b) Let  $f \in L^p(\mathbb{R})$ ,  $1 . Show that <math>D_R * f \to f$  in  $L^p$  as  $R \to \infty$ .
- (c) Let  $f \in L^p(\mathbb{R})$ ,  $1 \leq p < \infty$ . Show that  $F_R * f \to f$  pointwise almost everywhere as  $R \to \infty$ .

It is also true that  $D_R * f \to f$  pointwise almost everywhere for  $f \in L^p(\mathbb{R})$ , 1 . This is a difficult result due to Carleson.