Real and Harmonic Analysis, Problem set 3

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

Due on Thursday, 2016-05-12

Problems marked as oral will not be graded, but will be discussed during the exercise class. Please submit your solutions in groups of two

Problem 1 (Failure of local L^1 bound for the maximal operator, oral). Let $f(x) = \frac{1_{|x|<1}}{|x|(\log |x|)^2}$. Verify that $f \in L^1(\mathbb{R})$. Show that

$$Mf(x) \ge \frac{c1_{|x|<1}}{|x|\log|x|},$$

and that the latter function is not in L^1_{loc} .

Problem 2 (Whitney cubes, oral). Let $O \subsetneq \mathbb{R}^n$ be an open set. Show that O can be covered by a disjoint collection of cubes Q such that $dist(Q, \mathbb{R}^n \setminus O) \sim \ell(Q)$, where $\ell(Q)$ denotes the side length. This is the Whitney covering lemma.

Problem 3 (Calderón–Zygmund decomposition). Let $f \in L^1(\mathbb{R}^n)$ and let \mathcal{Q} be a Whitney covering of the set $\{Mf > \lambda\}$. The Calderón–Zygmund decomposition of f at the level λ is

$$f = g + b,$$
 $b = \sum_{Q \in Q} b_Q,$ $b_Q = 1_Q (f - |Q|^{-1} \int_Q f).$

The function b is called the "bad part" and the function g the "good part" of f.

- (a) Show that $g \in L^{\infty}(\mathbb{R}^n)$.
- (b) Show that $\int |b_Q| \leq C_n \lambda |Q|$ and $\int b_Q = 0$ for every $Q \in \mathcal{Q}$, where |Q| denotes the Lebesgue measure of the set Q.
- (c) In the case n = 1 use the last estimate to bound $\int_{\{M_f \leq \lambda\}} |Hb|$, where H is the Hilbert transform.
- (d) Conclude that H has weak type (1, 1).

Problem 4 (Maximally truncated Hilbert transform). It has been proved in the lecture that

$$Hf = \lim_{\epsilon \to 0} H_{\epsilon}f, \quad H_{\epsilon}f(x) = \int_{|t| \ge \epsilon} f(x-t)\frac{dt}{t}, \tag{1}$$

for $f \in L^2(\mathbb{R})$ with convergence in $L^2(\mathbb{R})$. The objective of this problem is to show that, in fact, convergence holds almost everywhere.

Let $f \in L^2(\mathbb{R})$ and $x \in \mathbb{R}$. For a fixed $\epsilon > 0$ write $f = f_1 + f_2$ with $f_1 = f_{1_{B(x,\epsilon)}}$, $f_2 = f_{1_{B(x,\epsilon)^c}}(B(x,\epsilon))$ is the ball of radius ϵ centered at x and $B(x,\epsilon)^c$ is its complement).

(a) Show that $|x - x'| < \epsilon/2$ implies $|Hf_2(x) - Hf_2(x')| \le CMf(x)$ and conclude

$$|H_{\epsilon}f(x)| \le |Hf(x')| + |Hf_1(x')| + CMf(x)$$

for almost every x' such that $|x - x'| < \epsilon/2$.

(b) Estimate the measure of the set $\{x' : |Hf(x')| > \lambda, |x - x'| < \epsilon/2\}$ in terms of MHf and the measure of the set $\{x' : |Hf_1(x')| > \lambda\}$ using the weak type (1, 1) estimate for H. Choose a λ that ensures that these sets do not cover $B(x, \epsilon/2)$ and conclude that the inequality

$$|H_{\epsilon}f| \le C(M(Hf) + Mf)$$

holds pointwise.

(c) Show that the operator

$$H_*f(x) := \sup_{\epsilon > 0} |H_\epsilon f(x)|$$

is bounded on $L^2(\mathbb{R})$.

(d) Conclude that (1) holds pointwise almost everywhere.