Real and Harmonic Analysis, Problem set 2

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

Due on Thursday, 2016-04-28

Problems marked as oral will not be graded, but will be discussed during the exercise class. Please submit your solutions in groups of two

Problem 1 (Quasinormed spaces). Show that the functional $||f||_p := (\int |f|^p)^{1/p}$, 0 , satisfies the quasi-triangle inequality

$$||f + g||_p \le C_p(||f||_p + ||g||_p).$$

Consider the space $L^p(\mathbb{R})$ of the functions f with $||f||_p < \infty$. Show that there are no non-trivial bounded linear functionals on this space, that is, if $\ell : L^p(\mathbb{R}) \to \mathbb{C}$ is a linear map such that

 $|\ell(f)| \le C ||f||_p$

for all $f \in L^p(\mathbb{R})$, then $\ell \equiv 0$. Hint: let $F(x) := \ell(1_{[0,x]})$ and consider F(x) - F(y).

Problem 2 (Weak L^p spaces). The weak L^p norm of a function f is the quantity

$$||f||_{p,\infty} := \sup_{\lambda > 0} \lambda |\{|f| > \lambda\}|^{1/p}, \qquad 0$$

- (a) Show that $||f||_{p,\infty} \le ||f||_p$ for all 0 .
- (b) Show that the functional $||f||_{p,\infty}$ satisfies the quasi-triangle inequality.
- (c) Let $0 < r < p < \infty$. Show that the expression

$$||f||_{p,\infty,r} := \sup_{0 < |E| < \infty} |E|^{-\frac{1}{r} + \frac{1}{p}} (\int_E |f|^r)^{1/r}$$

is equivalent to the weak L^p norm in the sense that there exist constants $0 < c_{p,r} \leq C_{p,r} < \infty$ such that $c_{p,r} ||f||_{p,\infty} \leq ||f||_{p,\infty,r} \leq C_{p,r} ||f||_{p,\infty}$ holds for all f. Hint: in order to show the second inequality use (and prove that it holds if you haven't seen it before) the layer cake representation

$$\int_E |f|^r = r \int_{\lambda=0}^\infty \lambda^{r-1} |E \cap \{|f| > \lambda\}|.$$

- (d) Suppose that $1 = r . Show that <math>||f||_{p,\infty,r}$ is a norm (that is, it satisfies the genuine triangle inequality).
- (e) Let $0 . Use Problem 1 and the Hahn–Banach theorem to show that <math>||f||_{p,\infty}$ does not admit an equivalent norm.
- (f) Show that there is no norm equivalent to $||f||_{1,\infty}$. To this end, for each $N \in \mathbb{N}$ construct a sequence of functions f_j , $j = 1, \ldots, 2^N$, such that $||f_j||_{1,\infty} \leq C$ and $||\sum_{j=1}^{2^N} f_j||_{1,\infty} \geq cN2^N$.

Problem 3 (Failure of Hasdorff–Young for p > 2, oral). Let $\phi : [0, 2\pi] \to \mathbb{C}$ be a smooth function supported on [0, 1/N] and let $\phi_j(x) = \phi(x - j/N)e^{ix\xi_j}$, where $\xi_{j+1} - \xi_j \gg 1$. Compare the growth rates of

$$\|\sum_{j=1}^{N} \phi_j\|_p$$
 and $\|\sum_{j=1}^{N} \hat{\phi}_j\|_{p'}$

as $N \to \infty$ and conclude that the Hasdorff-Young inequality is false for p > 2.

Problem 4 (Logarithmic convexity of L^p norms, oral). Let $0 < p_0 < p < p_1 \le \infty$ and $f \in L^{p_0} \cap L^{p_1}$. Show that for all $0 \le \theta \le 1$ one has

$$||f||_{p_{\theta}} \le ||f||_{p_{0}}^{1-\theta} ||f||_{p_{1}}^{\theta}, \quad \frac{1}{p_{\theta}} = \frac{1-\theta}{p_{0}} + \frac{\theta}{p_{1}},$$

using the three lines lemma.