Real and Harmonic Analysis, Problem set 1

Mathematisches Institut Dr. Diogo Oliveira e Silva Dr. Pavel Zorin-Kranich Summer term 2016

Due on Thursday, 2016-04-21

Problems marked as oral will not be graded, but will be discussed during the exercise class. Please submit your solutions in groups of two

Problem 1 (Minkowski integral inequality). Let X_1, X_2 be σ -finite measure spaces, f a non-negative measurable function on $X_1 \times X_2$, and $1 \le p \le \infty$. Show that

$$\|\int_{X_2} f(x_1, x_2) dx_2\|_{L^p(x_1)} \le \int_{X_2} \|f(x_1, x_2)\|_{L^p(x_1)} dx_2.$$

Hint: for 1 use Hölder's inequality and its converse.

Problem 2. Show that the following sets of functions are dense in $L^p(\mathbb{R}^d)$, $1 \leq p < \infty$.

- (a) The set L_c^{∞} of bounded measurable functions with compact support,
- (b) the set of finite linear combinations of characteristic functions of bounded measurable sets,
- (c) the set of finite linear combinations of characteristic functions of rectangular boxes (with edges parallel to coordinate axes),
- (d) the set C_c^{∞} of smooth functions with compact support.

Hint: in the penultimate step use the outer measure to approximate sets of finite measure by finite unions of cubes.

Problem 3 (weak topology). A sequence of functions f_n in $L^p(\mathbb{R}^d)$, 1 , is said to converge*weakly* $to <math>f \in L^p$, in symbols $f_n \rightharpoonup f$ if

$$\int f_n g \to \int f g \tag{1}$$

for every $g \in L^{p'}$.

Let (f_n) be a sequence in L^p with $||f_n|| \le C < \infty$ for all n.

- (a) Show that it suffices to verify (1) for g in any given dense subset $D \subset L^{p'}$.
- (b) Show that $L^{p'}$ is *separable*, that is, it contains a countable dense subset (hint: use part (c) of Problem 2).
- (c) Conclude that the sequence (f_n) has a weakly convergent subsequence.

Problem 4 (Multiple term Hölder inequality, oral). Let $1 \le p_1, \ldots, p_n \le \infty$ be such that $\sum_{j=1}^n p_j^{-1} = 1$. Show that

$$|\int \prod_{j=1}^{n} f_j| \le \prod_{j=1}^{n} ||f_j||_{p_j}$$

What if $n = \infty$?