Einführung in die Komplexe Analysis, Übungsblatt Nr. 7

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Sommersemester 2016

Abgabe in der Vorlesung am 06.06.2016.

Pro Aufgabe sind 10 Punkte erreichbar.

Aufgabe 1 (Kreistreue der Möbiustransformationen). (a) Zeigen Sie dass jede Möbiustransformation als Verkettung linearer Transformationen und der Inversion $z \mapsto \frac{1}{z}$ geschrieben werden kann.

- (b) Ein verallgemeinerter Kreis in der Riemannschen Kugel \mathbb{C}^* ist entweder ein Kreis in \mathbb{C} oder die Vereinigung einer Geraden in \mathbb{C} mit dem Punkt ∞ . Zeigen Sie dass das Bild eines verallgemeinerten Kreises unter einer Möbiustransformation wieder ein verallgemeinerter Kreis ist.
- **Aufgabe 2** (Doppelverhältnis). (a) (Die Gruppe der Möbiustransformationen wirkt auf \mathbb{C}^* scharf dreifach transitiv) Seien $x_1, x_2, x_3 \in \mathbb{C}^*$ drei paarweise verschiedene Punkte. Geben Sie die Formel für eine Möbiustransformation ϕ mit $\phi(x_1) = 0$, $\phi(x_2) = 1$, $\phi(x_3) = \infty$ an. Zeigen Sie dass eine Möbiustransformation mit diesen Eigenschaften eindeutig bestimmt ist.
 - (b) (Doppelverhältnis, engl. cross-ratio) Seien $x_1, x_2, x_3, x_4 \in \mathbb{C}^*$ vier paarweise verschiedene Punkte. Ihr Doppelverhältnis ist definiert als

$$(x_1, x_2; x_3, x_4) := \frac{(x_1 - x_3)(x_2 - x_4)}{(x_2 - x_3)(x_1 - x_4)}$$

falls alle x_i von ∞ verschieden sind. Falls ein $x_i = \infty$ ist, sind beide Klammern in denen x_i vorkommt in der Definition zu streichen (dies ist die stetige Fortsetzung der obigen Definition auf den Bereich $\{x_i = \infty\}$). Zeigen Sie dass das Doppelverhältnis unter Möbiustransformationen erhalten bleibt, das heißt, für jedes Tripel paarweise verschiedener Punkte $x_1, x_2, x_3, x_4 \in \mathbb{C}^*$ und jede Möbiustransformation ϕ gilt

$$(\phi(x_1), \phi(x_2); \phi(x_3), \phi(x_4)) = (x_1, x_2; x_3, x_4).$$

Hinweis: zeigen Sie dies zunächst für die Möbiustransformation aus dem Aufgabenteil (a).

(c) Zeigen Sie dass vier paarweise verschiedene Punkte in \mathbb{C}^* genau dann auf einem verallgemeinerten Kreis liegen wenn ihr Doppelverhältnis reell ist.

Aufgabe 3 (Riemannsche Abbildungen). Geben Sie biholomorphe bijektive Abbildungen folgender einfach zusammenhängeden Mengen auf die Einheitskreisscheibe an:

- (a) die rechte Halbebene $\{\text{Re}z > 0\},$
- (b) der Sektor $\{re^{i\phi}, r > 0, |\phi| < a\}$ mit $0 < a \le \pi$,
- (c) der Halbkreis $\{|z| < 1, \text{Im}z > 0\}$ (*Hinweis:* finden Sie eine Möbiustransformation die den Halbkreis auf einen Sektor abbildet),
- (d) der Streifen {|Imz| < a}, a > 0.

Aufgabe 4. Sei $\lambda > 1$. Zeigen Sie dass die Gleichung $e^{-z} + z = \lambda$ in der rechten Halbebene $\{\text{Re}z > 0\}$ genau eine Lösung besitzt und dass diese Lösung reell ist.