Einführung in die Komplexe Analysis, Übungsblatt Nr. 2

Mathematisches Institut Prof. Dr. Christoph Thiele Dr. Pavel Zorin-Kranich Sommersemester 2016

Abgabe in der Vorlesung am 25.04.2016.

Pro Aufgabe sind 10 Punkte erreichbar.

Aufgabe 1 (Satz von Liouville). Sei f eine ganze Funktion, das heißt dass $f: \mathbb{C} \to \mathbb{C}$ auf ganz \mathbb{C} definiert und komplex differenzierbar ist. Zeigen Sie dass f konstant sein muss falls |f| beschränkt ist. Hinweis: benutzen Sie die Cauchy-Integralformel

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

für Dreieckskurven γ mit den Ecken N, N(i-1), N(-i-1) um $f(z_0)$ und f(0) darzustellen. Schätzen Sie die Differenz $|f(z_0) - f(0)|$ anschließend ab und lassen Sie $N \to \infty$ gehen.

Aufgabe 2 (Fundamentalsatz der Algebra). (a) Folgern Sie aus dem Satz von Liouville den Fundamentalsatz der Algebra: jedes nichtkonstante Polynom $p: \mathbb{C} \to \mathbb{C}$ besitzt eine komplexe Nullstelle. Hinweis: zeigen Sie zuerst dass 1/p eine beschränkte ganze Funktion sein muss falls p keine Nullstellen besitzt.

- (b) Ein nichtkonstantes Polynom über einem Körper K heißt irreduzibel falls es nicht als Produkt von Polynomen kleineren Grades geschrieben werden kann. Zeigen Sie dass alle irreduziblen Polynome über \mathbb{C} Grad 1 haben und dass alle irreduziblen Polynome über \mathbb{R} Grad 1 oder 2 haben. Hinweis: benutzen Sie den Fundamentalsatz der Algebra und den Euklidischen Algorithmus. Der letztere liefert für Polynome p, s eine Zerlegung p = sq + r sodass entweder deg $r < \deg s$ oder s = 0 gilt und sei als bekannt vorausgesetzt.
- (c) Zeigen Sie dass $\mathbb C$ keine echten Körpererweiterung von endlichem Grad besitzt. Hinweis: was ist ein Minimalpolynom?
- (d) Zeigen Sie dass $\mathbb R$ bis auf Isomorphie nur eine echte Körpererweiterung von endlichem Grad besitzt, nämlich $\mathbb C$.

Aufgabe 3. Die Wirtinger-Ableitungen einer Funktion $\mathbb{C} \to \mathbb{C}$ sind durch $\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$ und $\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$ definiert.

- (a) Drücken Sie die Cauchy–Riemannschen Differentialgleichungen und den Laplaceoperator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ durch Wirtinger-Ableitungen aus. Folgern Sie dass der Realteil Ref und der Imaginärteil Imf einer auf $\mathbb C$ komplex differenzierbaren Funktion harmonische Funktionen sind.
- (b) Sei umgekehrt $u: \mathbb{C} \to \mathbb{R}$ eine 2 mal stetig differenzierbare, harmonische Funktion. Zeigen Sie dass eine komplex differenzierbare Funktion $f: \mathbb{C} \to \mathbb{C}$ mit Ref = u existiert.

Aufgabe 4. Sei $n \in \mathbb{Z}$ und sei a ein Element der geschlitzten komplexen Ebene $Y := \mathbb{C} \setminus (-\infty, 0]$. Man definiere

$$F_n(a) := \int_{(1,a)} z^n dz.$$

Diese Funktion ist auf Y komplex differenzierbar und $F'(z) = z^n$ für $z \in Y$ (dies folgt aus dem Satz von Goursat und wird voraussichtlich in der Vorlesung am 21.04. gezeigt).

- (a) Geben Sie eine explizite Formel für F_n im Fall $n \neq 1$ an.
- (b) Im Fall n = -1 drücken Sie $F_{-1}(a)$ durch den Real- und Komplexteil von a sowie ln und arctan aus. Die Funktion F_{-1} heißt der Hauptzweig des komplexen Logarithmus.
- (c) Zeigen Sie dass F_{-1} auf keinen Punkt von $(-\infty,0]$ stetig fortgesetzt werden kann.
- (d) Berechnen Sie die Differenz

$$\int_{(i-1,-i-1)} z^n dz - (F_n(-i-1) - F_n(i-1)), \qquad n \in \mathbb{Z}.$$