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1 Fundamentals

A complex number is a pair (x, y) of real numbers. The space C = R2 of
complex numbers is a two-dimensional R-vector space. It is also a normed
space with the norm defined as

|(x, y)| =
√
x2 + y2.

This is the usual Euclidean norm and induces the structure of a Hilbert space
on C. An additional feature that makes C very special is that it also has a
product structure defined as follows (that product is not to be confused with
the scalar product of the Hilbert space).

Definition 1.1 (Product of complex numbers). For two complex numbers
(x1, y1), (x2, y2) ∈ C, their product is defined by

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

∗Notes by Joris Roos and Gennady Uraltsev.
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This defines a map C × C → C. It can be rewritten in terms of another
product, the matrix product:

(x1, y1)(x2, y2) = (x1, y1)

(
x2 y2

−y2 x2

)
.

In fact, we can embed the complex numbers into the space of real 2 × 2
matrices via the linear map

C −→ R2×2

(x, y) 7−→
(

x y
−y x

)
.

The map translates the product of complex numbers into the matrix product.
This is very helpful to verify some of the following properties:

1. Commutativity (follows directly from the definition),

2. Associativity,

3. Distributivity,

4. Existence of a unit:

(x1, y1) = (1, 0)(x1, y1), and

5. Existence of inverses: if (x, y) 6= 0, then

(x, y)

(
x

x2 + y2
,
−y

x2 + y2

)
=

(
x2 + y2

x2 + y2
,
xy − yx
x2 + y2

)
= (1, 0).

In terms of the matrix representation this property is based on the fact

that non-zero matrices of the form

(
x y
−y x

)
are always invertible:

det

(
x y
−y x

)
= x2 + y2 6= 0 (1.1)

for (x, y) 6= 0. It also entails that the inverse matrix is again of that
form.

Summarizing, the product of complex numbers gives C the structure of a
field. The existence of such a product makes R2 unique among the higher
dimensional Euclidean spaces Rd, d ≥ 2. Roughly speaking, the reason for
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this phenomenon is the very special structure of the above 2×2 matrices. In
higher dimensions it becomes increasingly difficult to find a matrix represen-
tation such that Property 5 is satisfied. The only cases in which it is possible
at all give rise to the quaternion (d = 4) and octonion (d = 8) product,
neither of which is commutative (and the latter is not even associative).

Another important property is that we have compatibility of the product
with the norm:

|(x1, y1)(x2, y2)| = |(x1, y1)| · |(x2, y2)|.

This is a consequence of the determinant product theorem and the identity

|(x, y)| =

√
det

(
x y
−y x

)
.

One consequence of this is that for fixed (x1, y1), the map (x1, y1) 7→ (x1, y1)(x2, y2)
is continuous (but of course this can also be derived differently).
We now proceed to introduce the conventional notation for complex numbers.

Definition 1.2. We write 1 = (1, 0) to denote the multiplicative unit.
i = (0, 1) is called the imaginary unit. A complex number (x, y) is written
as

z = x+ iy.

x =: Re (z) is called the real part and y =: Im (z) the imaginary part. The
complex conjugate of z = x+ iy is given by

z = x− iy

We have the following identities:

i2 = (0, 1)(0, 1) = (−1, 0) = −1,

|z|2 = zz = (x+ iy)(x− iy) = x2 + y2,

1

z
=

z

|z|2
.

The product of complex numbers has a geometric meaning. Observe that
the unit circle in the plane consists of those complex numbers z with |z| = 1.
Say that z1, z2 lie on the unit circle. That is, |z1| = 1, |z2| = 1. Then also
|z1z2| = |z1| · |z2| = 1, so also z1z2 is on the unit circle. So the linear map
C→ C, z1 7→ z1z2 maps the unit circle to itself. Recall that there are not too
many linear maps with this property: only rotations and reflections. Since
the determinant is positive by (1.1), it must be a rotation.
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z1

z2

z1z2

Every non-zero complex number can be written as the product of one on the
circle and a real number:

z =
z

|z|
|z|

Multiplication with a real number corresponds to stretching, so we conclude
from the above that multiplication with a complex number corresponds to a
rotation and stretching of the plane.

Example 1.3. We use our recently gained geometric intuition to derive a cu-
rious formula for the square root of a complex number. Look at the following
picture.

z 1 + z

1

z̃
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We have given some z with |z| = 1 and would like to find z̃ with z̃2 = z. The
picture suggests to pick

z̃ =
1 + z

|1 + z|
.

Indeed we have

z̃2 =
(1 + z)2

(1 + z)(1 + z)
=

1 + z

1 + z
=
zz + z

1 + z
= z

1 + z

1 + z
= z.

Now let z 6= 0 be a general complex number and apply the above to z
|z| . Then

the square roots of z are given by

√
z = ±

1 + z
|z|∣∣∣1 + z
|z|

∣∣∣
√
|z|.

We now turn our attention to functions of a complex variable f : C→ C. A
prime example is given by complex power series:

∞∑
n=0

anz
n = lim

N→∞

N∑
n=0

anz
n.

To find out when this limit exists we check when the sequence of partial sums
is Cauchy. Take M < N and compute:∣∣∣∣∣

N∑
n=0

anz
n −

M∑
n=0

anz
n

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=M+1

anz
n

∣∣∣∣∣ ≤
N∑

n=M+1

|anzn| =
N∑

n=M+1

|an| rn,

where r = |z|. This implies that if
∑∞

n=0 |an|rn converges in R, then
∑∞

n=0 anz
n

converges in C. Next,
∑∞

n=0 |an|rn < ∞ holds if there exists r̃ > r with
supn |an|r̃n <∞ because

∞∑
n=0

|an|rn =
∞∑
n=0

anr̃
n
(r
r̃

)n
≤
(

sup
n
|an|r̃n

) ∞∑
n=0

(r
r̃

)n
<∞.

Definition 1.4. The convergence radius of a power series
∑∞

n=0 anz
n is de-

fined as
R := sup{r̃ : sup

n
|an|r̃n <∞}.

• For z ∈ DR(0) = {z : |z| < R}, the sum
∑∞

n=0 anz
n converges.

• For |z| > R, the sum
∑∞

n=0 anz
n diverges.
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• For |z| = R both convergence and divergence are possible.

Examples 1.5. The exponential series

ez :=
∞∑
n=0

1

n!
zn.

has convergence radius R =∞. The same holds for

cos(z) :=
∞∑
n=0

(−1)n

(2n)!
z2n,

sin(z) :=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

These combine to give the Euler formula,

eiz = cos(z) + i sin(z).

From Analysis I we know1 that

ez1+z2 = ez1ez2

for all z1, z2 ∈ C.

These properties imply that for ϕ real, eiϕ lies on the unit circle, in other
words that sin(ϕ)2 + cos(ϕ)2 = 1:

sin(ϕ)2 + cos(ϕ)2 = |eiϕ|2 = eiϕeiϕ = eiϕe−iϕ = eiϕ−iϕ = e0 = 1.

Remark 1.6. General polynomials in x, y on R2 are of the form

N∑
n,m=0

an,mx
nym =

N∑
n,m=0

an,m

(
z + z

2

)n(
z − z

2i

)m
=

N∑
n,m=0

bn,mz
nzm.

In complex analysis we only consider the case bn,m = 0 for m 6= 0.

Definition 1.7. Let Ω ⊂ C be open. A function f : Ω→ C is called complex
differentiable at z ∈ Ω if there exists δ > 0 such that Dδ(z) := {w ∈ C :
|z − w| < δ} ⊂ Ω and the function o, defined by the equation

f(z + h) = f(z) + hg(z) + o(h), (1.2)

has the property that for all ε > 0 there exists δ > 0 with |o(h)| < ε|h| for
all |h| < δ.

1Precisely speaking, we only proved it for real numbers, but the proof is literally the
same.
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Theorem 1.8. If f(z) =
∑∞

n=0 anz
n has convergence radius R, then

g(z) =
∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

also has convergence radius R and for |z| < R, f is complex differentiable at
z.

Proof. We already know how to differentiate power series from real analysis.
The proof of this theorem works exactly the same way as in the real case:

f(z + h) =
∞∑
n=0

an(z + h)n =
∞∑
n=0

(
anz

n + nhzn−1 +
n∑
k=2

an

(
n

k

)
hkzn−k

)
= f(z) + hg(z) + o(h)

and∣∣∣o(h)

h

∣∣∣ ≤ |h| ∞∑
n=0

|an|n2

n−2∑
k=0

(
n+ 2

k

)
|h|k|z|n+2−k ≤ |h|

∞∑
n=0

|an|n2(|z|+ |h|)n+2.

Compare this to the real Taylor series in R2: let f : R2 → R2 be totally
differentiable in z, then there exists a matrix A with

f(z + h) = f(z) + Ah+ o(h) (1.3)

and for all ε > 0 there exists δ > 0 such that |o(h)| ≤ ε|h| for |h| < δ. Note
that the product in (1.3) is the matrix product and the product in (1.2) is
the product of complex numbers. They coincide if and only if

A =

(
a b
−b a

)
.

Thus we find that a function f(z) = (u(x, y), v(x, y)) that is (real) totally
differentiable at z is complex differentiable at z if and only if

∂u

∂x
(z) =

∂v

∂y
(z) and

∂u

∂y
(z) = −∂v

∂x
(z). (1.4)

These are called the Cauchy-Riemann differential equations.

End of lecture 1. April 11, 2016
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We will now study some properties of functions on an open complex disk.
In particular we will concentrate on the question of regularity and differen-
tiability. In the previous lecture we have mentioned that power series are
complex differentiable inside the disk of the radius of convergence. To estab-
lish notation let us introduce the following sets.
A We denote by A the set of all power series

A :=

{
∞∑
n=0

anz
n : an ∈ C, z ∈ DR(0)

}

with radius of convergence at least R > 0 so that for all z in the do-
main DR(0) = {z : |z − 0| < R} the series converges absolutely (equivalently
supn|an|τn <∞ for any 0 ≤ τ < R).
As noted previously, A is a subset of the set of all formal power series onDR ⊂
C given by

∑∞
m,n=0 bn,mx

nym with x = Re (z), y = Im (z). Equivalently
these formal series can be expressed as

∑∞
n,m=0 an,mz

nz̄m and A puts both
a restriction on the growth of the coefficients an,m given by the condition
of being convergent on DR(0) and the additional constraint that an,m = 0
unless m = 0.
B We denote by B the set of functions that are complex differentiable in
every point of the open disk DR(0). In particular, as per condition (1.2), B
consists of those functions f : DR(0) 7→ C such that for any point z ∈ DR(0)
and for any increment h : |z| + |h| < R there exists the complex derivative
g(z) ∈ C i.e. a complex coefficient such that

f(z + h) = f(z) + hg(z) + o(h)

where o(h) is some function (depending on z) for which for any ε > 0 there
exists a ∃δ > 0 such that for any |h| < δ, |z| + |h| < R we have that
o|h| ≤ ε|h|. Recall that this is related to total differentiability on C ≡ R2.
As a matter one can write the following for a totally differentiable function
on C:

f(z + h) = f(z) + A(z)h+ o(h) A(z) =

(
a(z) b(z)
c(z) d(z)

)
.

Complex differentiability is equivalent to asking the differential as a linear
map A : R2 7→ R2 can be represented by complex multiplication: A(z)h =
g(z)h for some g(z) ∈ C. This holds if and only if a(z) = d(z) and b(z) =
−c(z).
Let us recall the Cauchy-Riemann equations (1.4) and elaborate how they
are related to complex differentiability. Setting f(z) = (u(x, y), v(x, y)), the
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equations are given by

∂u(x, y)

∂x
=
∂v(x, y)

∂y

∂u(x, y)

∂y
= −∂v(x, y)

∂x
.

We can rewrite this equation by defining the following two differential oper-
ators called ∂

∂z
and ∂

∂z̄
by setting

∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
.

Once again setting f(x, y) = u(x, y) + iv(x, y) we can compute

∂f

∂z̄
=

1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

))
= 0

It is apparent that the two Cauchy-Riemann equations are just the real and
imaginary part of ∂f

∂z̄
. Since we have already mentioned that complex dif-

ferentiability is equivalent to a condition on the differential matrix A that
corresponds to the Cauchy-Riemann equations in terms of partial derivatives,
it follows that a function is complex differentiable if and only if it is totally
differentiable and has ∂f

∂z̄
= 0. Furthermore, if f is complex differentiable

then we write

f ′(z) :=
∂

∂z
f(z).

Finally, in terms of the the real and imaginary part separately we have

∂

∂z
f(z) =

1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
.

C We denote by C the subset of continuous functions f : DR(0) 7→ C such
that the following integral condition holds∫

(a,b,c)

f(z)dz = 0 ∀a, b, c ∈ DR(0).

Here (a, b, c) is the (oriented) boundary of the (oriented) triangle, also re-
ferred to as a simplex, formed by the points a, b, and c. We will identify
(a, b, c) by the closed path composed of the three segments a→ b→ c→ a.
The above integral is a special case of an integral along a path of a complex
function. For now we restrict ourselves to the case were the support of the
path is a complex segment, parametrized in linear fashion.
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Definition 1.9 (Integral of a complex function along a segment). Consider
the segment (a, b) with a, b ∈ C and a complex-valued continuous function
f : Ω ⊂ C 7→ C defined on an open neighborhood of (a, b). We set the
integral of the function f along (a, b) to be∫

(a,b)

f(z)dz :=

∫ 1

0

f (bt+ a(1− t)) (b− a)dt.

Here the integrand on the right hand side is a function [0, 1] 7→ C ≡ R2

and the integral is simply calculated coordinate-wise. Notice however that
the integrand itself f (bt+ a(1− t)) ·(b − a) is expressed itself as a complex
product.

a

b

Figure 1: A segment defining a path from a to b.

This definition of the integral over a segment corresponds to the well known
concept of a path integral, and extends it to complex functions:

∫
(a,b)

f(z)dz =

∫ 1

0

f (bt+ a(1− t)) (b−a)dt =

∫
γ

fdγ =

∫ 1

0

f(γ(t))γ′(t)dt

with γ(t) = bt+a(1−t) as the path that parameterizes the segment. We nat-
urally extend this definition to the three oriented segments of the boundary
of a triangle by setting∫

(a,b,c)

f(z)dz :=

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz.

Finally notice that the definition of integrating along a path is oriented and
as such we have ∫

(a,b)

f(z)dz = −
∫

(b,a)

f(z)dz.

This can be easily verified by a change of variables.
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a

b

c

Figure 2: A triangle and its oriented boundary.

The characterization of the set C in terms of path integrals is geometric
and does not rely on the smoothness of f . As a matter of fact we require f
merely to be continuous. However we will now see that integral over triangles
condition over all possible triangles implies stronger structure results and in
particular that f is actually smooth and complex differentiable.

Theorem 1.10. The classes of functions we introduced coincide i.e. A =
B = C.

A ⊂ B The rules of differentiation of power series imply immediately the
inclusion A ⊂ B.
A ⊂ C We will now show directly that the path integral of a power series
along a closed path, and specifically (a, b, c) is zero. In previous courses of
analysis we have seen a similar statement for gradient fields and the proof
followed from the existence of a primitive. We can, however, deduce the
existance of a primitive of a power series formally and this will provide us
with the needed elements to adapt a similar approach.
Recall the definition of the set A: f ∈ A is of the form f(z) =

∑∞
n=0 anz

n.
Let us define its primitive via

F (z) :=
∞∑
n=0

1

n+ 1
anz

n+1.

Clearly F ∈ A since it is a power series and its radius of convergence is
not smaller than that of f . This follows simply from the bound on the nth

coefficient of F by that of f :

1

n+ 1
|an| ≤ |an|.

We claim that F is effectively a primitive of f and in particular∫
(a,b)

f(z)dz =

∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a).
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The first equality is just the definition of a complex path integral. To show
the second equality let us define g(y) = F (γ(t)) with γ(t) = a(1− t) + bt and
let us show that

g′(t) = f (a(1− t) + bt) (b− a).

This is essentially the chain rule for complex-valued complex differentiable
functions. We write

g(t+ h) = F (γ(t+ h)) = F (γ(t) + (b− a)h)

= F (γ(t)) + (b− a)hf (γ(t)) + o ((b− a)h)

= g(t) + (b− a)hf (γ(t)) + o ((b− a)h)

Here we used that the complex differential of F in γ(t) is given by f (γ(t))
and that (b− a)h is a small complex increment. Notice also that h is a real
increment. We have thus that∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a)

and ∫
(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz

=F (b)− F (a) + F (c)− F (b) + F (a)− F (c) = 0

B ⊂ C This statement is known as “Theorem of Goursat”. Let f ∈ B be
complex differentiable in DR(0). We must show that for any r̃ < R and
∀a, b, c ∈ Dr̃(0) one has

∫
(a,b,c)

f(z)dz = 0. It is sufficient to show that for

any ε > 0 and ∀a, b, c ∈ Dr̃(0) we have that∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ ≤ εmax (|b− a|, |c− b|, |a− c|)2 .

The argument we present relies on an induction on scales. The term

max (|b− a|, |c− b|, |a− c|)2

on the right hand side of the above entry is a measure of the scale of “how
large” or the scale of the triangle. We will show that the statement holds for
triangles that have sufficiently small scale and then to an induction argument
that will show that is the statement holds for a certain scale it also holds for
triangle up to twice as large. This would allow us to conclude the statement
for all triangles.
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Part 1: We start by showing that the above bound holds for all points
a, b, c ∈ Dr̃(0) with max (|b− a|, |c− b|, |a− c|) < δmin for some δmin > 0.
For any z ∈ Dr̃(0) there exists δ = δ(z) such that ∀|h| < δ we have

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

8
|h|.

Reasoning by compactness we can find a finite set z1, . . . , zN such that
Dr̃(0) ⊂

⋃N
j−1Dδ(zi)/3(zi) where δ(zi) is the radius for which the above bound

holds. Setting δmin := mini δ(zi)
3

one has that ∀z ∈ Dr̃(0) ∀|h| < δmin we have
via the triangle inequality

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

4
|h|.

z0

δ(z0)
3

a

b

c

Figure 3: A triangle in a small circle

Now consider two point a, b with |b− a| < δmin. We can evaluate the contri-
bution of the three terms of the expansion of f to the line integral.∫

(a,b)

f(z)dz =

∫
(a,b)

f(z0) + (z − z0)f ′(z0) + o(z − z0)dz

The first term gives ∫ 1

0

f(z0)(b− a)dt = f(z0)(b− a).
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The second term gives∫ 1

0

f ′(z0) (bt− a(1− t)− z0) (b− a)dt

=f ′(z0)

(
1

2
(b+ a)(b− a)− a(b− a)− z0(b− a)

)
=f ′(z0)

(
1

2
(b2 − a2) + z0(b− a)

)
We have crucially used complex differentiability of f here. As a matter
of fact the algebraic manipulation relied on the commutativity of complex
multiplication. If f were just any totally differentiable function then f ′(z0)
would be substituted by some arbitrary 2× 2 matrix and the above identity
would not necessarily hold.
Summing up the contributions of the three terms we obtain∫

(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz =

= f(z0)(b− a+ c− b+ a− c)

+ f ′(z0)

(
1

2
(b2 − a2 + c2 − b2 + a2 − c2) + z0(b− a+ c− b+ a− c)

)
+

∫
(a,b,c)

o(z − z0)dz

All terms except the last vanish while for the last we have the bound∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a,b,c)

o(z − z0)dz

∣∣∣∣
<
ε

4
(|b− a|+ |c− b|+ |a− c|) max

z∈(a,b,c)
|z − z0|

<
3ε

4
max (|b− a|, |c− b|, |a− c|)2

as required.
Part 2: We have now proved that the bound we seek holds for triangles
that are small enough. In particular we require that max(|b− a|, |c− b|, |a−
c|) < δmin. We will now show an inductive procedure that shows that if the
statement holds for when max(|b − a|, |c − b|, |a − c|) < δ then the same is
true if max(|b− a|, |c− b|, |a− c|) < 2δ.
The main idea is given by decomposing a triangle into smaller triangles in a
uniform way.

14



a

b

c

a′

b′

c′

Figure 4: Decomposing triangles into smaller ones

To do so we use the median points as shown in figure 4. Let a′, b′, c′ be the
median points of the sides of (a, b, c) opposite of the respective vertices. We
have∫

(a,b,c)

f(z)dz =

∫
(a,c′,b′)

f(z)dz +

∫
(b,a′,c′)

f(z)dz +

∫
(c,b′,a′)

f(z)dz

+

∫
(a′,b′,c′)

f(z)dz∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ < ε
(

max (|c′ − a|, |b′ − c′|, |a− b′|)2
+ max (...)2 + max (...)2

+ max (|b′ − a′|, |c′ − b′|, |a′ − c′|)2
)

< 4ε
max (|b− a|, |c− b|, |a− c|)2

4

as required. The crucial observation is that once we divide by the medians
we obtain four triangles for which the largest of side lengths is bounded by
a small (1/2) factor of the lengths of the original triangle. This implies that
first of all we may apply the assumptions at previous scale and that we obtain
a bound with the same constant.

End of lecture 2. April 14, 2016

We will prove the following stronger version of Goursat’s theorem.

Theorem 1.11. Let z0 ∈ DR(0), f : DR(0) → C continuous and complex
differentiable at all points of DR(0)\{z0}. Then f ∈ C.
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Proof. It suffices to show that for all r̃ < R, a, b, c ∈ Dr̃(0) we have∫
(a,b,c)

f(z)dz = 0.

Let 10δ = R− r̃. By the same argument as in the proof of Goursat’s theorem
it suffices to show this for small triangles: for all a, b, c ∈ Dr̃(0) with max(|a−
b|, |b− c|, |c− a|) ≤ δ/10.
Case 1. z0 6∈ Dδ/3(a). Then

∫
(a,b,c)

f(z)dz = 0 holds by Goursat’s theorem.

Case 2. z0 ∈ Dδ/3(a). It suffices to show
∫

(a,b,z0)
f(z)dz = 0 because∫

(a,b,c)

=

∫
(a,b,z0)

+

∫
(b,c,z0)

+

∫
(c,a,z0)

.

We can also assume that the angle at z0 is acute (if it is not acute, we bisect
the angle at z0 and consider the two resulting triangles). Next, construct a
circle through z0 that contains (a, b, z0). We can do this such that the radius
is at most δ.
Let ε > 0 be arbitrary. We will show∣∣∣∣∫

(a,b,z0)

f(z)dz

∣∣∣∣ ≤ ε.

By continuity of f at z0 we can choose points a′ on (a, z0) and b′ on (b, z0)
such that |f(z)− f(z0)| < ε/(3δ) for all z on the triangle (a′, b′, z0).

a b

z0

a′ b′

By Goursat’s theorem we have∫
(a,b,b′)

f(z)dz =

∫
(a′,a,b′)

f(z)dz = 0

16



so that ∫
(a,b,z0)

f(z)dz =

∫
(a′,b′,z0)

f(z)dz.

We estimate,∣∣∣∣∫
(a′,b′,z0)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a′,b′,z0)

f(z)− f(z0)dz

∣∣∣∣
≤
∫ 1

0

|f(b′t+ a′(1− t))− f(z0)||b′ − a′|dt+ · · ·︸ ︷︷ ︸
<ε

As a precursor to showing B ⊂ A we first prove the following.

Theorem 1.12. Let f : DR(0)→ C complex differentiable on DR(0). Then
for all z1 ∈ DR(0) there exists δ > 0 such that f can be represented by a
convergent power series on Dδ(z0) ⊂ DR(0).

Remark 1.13. In particular, this entails that functions which are complex
differentiable in a neighborhood are automatically infinitely often complex
differentiable.

This is a consequence of what is called Cauchy’s integral.

Proof. For w ∈ DR(0) we consider the function

gw(z) =
f(z)− f(w)

z − w

with the understanding that gw(w) = f ′(w). This function is continuous on
DR(0) and complex differentiable on DR(0)\{w}. Continuity of gw in w is a
consequence of complex differentiability of f in w. Complex differentiability
of gw in DR(0)\{w} follows by the product rule since f(z) − f(w) and 1

z−w
are both complex differentiable. Let us show the complex differentiability of
1
z

on C\{0} directly from the definition:

1

z + h
−1

z
=
z − (z + h)

z(z + h)
=
−h
z2

+
h

z2
− h

z(z + h)
= − h

z2
+

h2

z2(z + h)
=
−h
z2

+o(h)

where o(h) = h2/(z2(z + h)) so that

|o(h)| ≤ |h2|
∣∣∣∣ 1

z2(z + h)

∣∣∣∣ ≤ |h|2 ∣∣∣∣ 2

z3

∣∣∣∣ .
17



provided that |h| < |z|
2

.

Choose a, b, c ∈ DR(0) such that z0 lies in the interior of the triangle (a, b, c).
Further, pick δ > 0 small enough so that the circle of radius 2δ around z0 is
contained in the interior of the triangle (a, b, c).
Theorem 1.11 yields ∫

(a,b,c)

gw(z)dz = 0

for all w ∈ Dδ(z0). That is,∫
(a,b,c)

f(z)

z − w
dz =

(∫
(a,b,c)

dz

z − w

)
f(w)

Our claim is that ∫
(a,b,c)

dz

z − w
= ±2πi, (1.5)

where the sign is according to whether the triangle (a, b, c) is oriented counter-
clockwise (+) or clockwise (−). For the remainder of this proof, let us assume
it is oriented counter-clockwise. We defer the proof of this claim to the end
and first show how to use the equality

f(w) =
1

2πi

∫
(a,b,c)

f(z)

z − w
dz

to develop f into a convergent power series. The crucial point here is that on
the right hand side, the free variable w no longer occurs inside the argument
of f . Therefore we just need to know how to develop w 7→ 1

z−w into a power
series around z0:

1

z − w
=

1

(z − z0)(w − z0)
=

1

z − z0

· 1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
.

As a consequence,∫
(a,b,c)

f(z)

z − w
dz =

∫
(a,b,c)

1

z − z0

f(z)
∞∑
n=0

(
w − z0

z − z0

)n
dz

=
∞∑
n=0

(∫
(a,b,c)

f(z)

(z − z0)n+1
dz

)
(w − z0)ndz,

where the interchange of integration and summation is justified by uniform
convergence of the power series since 2|w−z0| < 2δ < |z−z0| by construction.

18



It remains to prove (1.5). For starters we calculate∫
(a,b)

1

z − w
dz =

∫ 1

0

b− a
(b− a)t+ a− w

dt =

∫ 1

0

1

t+ a−w
b−a

dt.

Temporarily denote a−w
b−a = x + iy with x, y real numbers. Decompose the

integral into real and imaginary part:∫ 1

0

1

t+ x+ iy
dt =

∫ 1

0

(t+ x)− iy
(t+ x)2 + y2

dt =

∫ 1

0

t+ x

(t+ x)2 + y2
dt+i

∫ 1

0

−y
(t+ x)2 + y2

dt.

Now we are only dealing with two real integrals that we can evaluate. The
first equals

1

2

∫ x+1

x

2t

t2 + y2
dt =

1

2

(
log((x+ 1)2 + y2)− log(x2 + y2)

)
= log

√
(x+ 1)2 + y2√
x2 + y2

.

(1.6)
The second equals

−
∫ x+1

x

y

t2 + y2
dt = −

∫ (x+1)/y

x/y

1

s2 + 1
ds = − arctan

(
x+ 1

y

)
+arctan

(
x

y

)
.

(1.7)

(x, y) (x+ 1, y)

The angle at 0 in the triangle (0, x + iy, x + 1 + iy) equals ±(1.7). Since
addition and multiplication with complex numbers preserves angles, that
angle equals the angle at w in the triangle (w, a, b) (the two triangles are
similar).
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For the same reason we have

log
|(x+ 1, y)|
|(x, y)|

= log
|b− w|
|a− w|

.

Applying the same reasoning to the other two segments (b, c), (c, a) we get

∫
(a,b,c)

1

z − w
dz =

=0︷ ︸︸ ︷
log

(
|b− w|
|a− w|

|c− w|
|b− w|

|a− w|
|c− w|

)
+i(ϕ1 + ϕ2 + ϕ3) = 2πi.

The last equality is by inspection of the figure:

a

b

c

w

ϕ1ϕ2

ϕ3

End of lecture 3. April 18, 2016

Let us recall the classes of complex-valued functions on the disk DR(0) that
we have introduced so far.

A :=

{
∞∑
n=0

anz
n : the series converges absolutely on DR(0)

}
B := {f : DR(0) 7→ C : f is complex differentiable ∀z ∈ DR(0)}

C :=

{
f : DR(0) 7→ C : f ∈ C(D;C),

∫
(a,b,c)

f(z)dz = 0 ∀a, b, c ∈ DR(0)

}
Additionally we have also introduced a new class Ã of functions that are
locally power series:

Ã :=

{
f : DR(0) 7→ C : f(z0 + h) =

∞∑
n=0

an(z0)hn ∀z0 ∈ DR(0) |h| < δz0

}
.
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where the local power series converges representation converges absolutely
for on a disk Dδz0

(z0).
We have already seen A ⊂ B, A ⊂ C, B ⊂ C.We will now pass to showing
the inclusion C ⊂ B and we will then conclude that B ⊂ A. It has already
been shown that B ⊂ Ã via an imporved Goursat’s theorem.

Proposition 1.14 (Morera’s Theorem: C ⊂ B). Let f : DR(0) 7→ C be a
continuous function such that for any three point a, b, c ∈ DR(0) one has∫

(a,b,c)

f(z)dz = 0.

Set F (z1) :=
∫

(0,z1)
f(z)dz for any point z1 ∈ DR(0). Then F is complex

differentiable in any point z and

F (z1 + h) = F (z1) +

∫
(z1,z1+h)

f(z)dz

if h ∈ C is such that z1 + h ∈ DR(0).

Proof. Clearly the contour integral condition applied to the triangle of the
points (0, z1 + h, z1) gives

F (z1 + h) =

∫
(0,z1+h)

f(z)dz

=

∫
(0,z1+h,z1)

f(z)dz +

∫
(0,z1)

f(z)dz +

∫
(z1,z1+h)

f(z)dz

= F (z1) +

∫
(z1,z1+h)

f(z)dz.

To obtain complex differentiability we estimate

F (z1 + h) = F (z1) +

f(z1)h︷ ︸︸ ︷∫
(z1,z1+h)

f(z1)dz+

∫
(z1,z1+h)

(f(z)− f(z1)) dz

= F (z1) + f(z1)h+

∫ 1

0

(f(z1 + ht)− f(z1))hdt = F (z1) + f(z1)h+ o(h)

with o(h) such that for all ε > 0 there exists a δ > 0 such that |o(h)| ≤∫ 1

0
|f(z1 + ht)− f(z1)| |h|dt ≤ ε|h| if |h| < δ. The last inequality follows

from the continuity of f .
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We already shown that B ⊂ Ã. Applying this to F shows that it is locally a
power series. In the above expression we have shown that f = F ′ and thus
f = F ′ formally as power series and it converges absolutely at least the same
radius on which F converges and thus f ∈ B.

We now prove the inclusion B ⊂ A. To do so we need a “global” argument.
The local argument gives B ⊂ Ã. We need to show that for any radius
R′ < R (and in particular we will need to choose radii R′ < R′′ < R′′′ < R)
the power series representing f ∈ Ã in 0 actually converges on DR′(0).

Remark 1.15. Notice that the power series of f ∈ Ã can be obtained in any
given point (in this case in 0) using the Taylor expansion

∞∑
n=0

anz
n =

∞∑
n=0

1

n!
fn(0)zn.

The identity can be checked by deriving both sides n times and evaluating
the expression in 0.

Figure 5: Discretization of an integral along a cirlce

For any fixed point z1 ∈ DR′(0) the function z 7→ f(z)−f(z1)
z−z1 is complex dif-

ferentiable at any point z ∈ DR′(0) \ {z1}. This is strait-forward by apply-
ing the chain rule to the composition and product of continuous, complex-
differentiable functions f(z)−f(z1) and 1

z−z1 . Furthermore z 7→ f(z)−f(z1)
is complex differentiable in z1 so

f(z)− f(z1) = f ′(z1)(z − z1) + o(z − z1).

This implies that f(z)−f(z1)
z−z1 is continuous in z1 and the value in z1 is precisely

f ′(z1). Let us choose a sequence of 2n points (a1, . . . , a2n) on the circle
{z ∈ C : |z| = R′′′} going counterclockwise so that the segements (ai−1, ai)
lie in DR′′′(0) \ DR′′(0). For example just set aj := R′′′ei2π2−nj. Using the
extention of Goursat’s theorem 1.11 we know that all contour integrals of f
over the triangles vanish (ai−1, ai, z1) so we can write

0 =
2n∑
i=1

∫
(ai−1,ai,z1)

f(z)− f(z1)

z − z1

dz =
2n∑
i=1

∫
(ai−1,ai)

f(z)− f(z1)

z − z1

dz
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where the second equality holds because the radial segments of the integral
cancel out. Thus we have

2n∑
i=1

∫
(ai−1,ai)

f(z)

z − z1

dz =
2n∑
i=1

∫
(ai−1,ai)

f(z1)

z − z1

dz

= f(z1)

(
2n∑
i=1

ln
|ai − z1|
|ai−1 − z1|

+ i(φi − φi−1)

)
= f(z1)2πi

where φi is the argument of ai− z1. This follows from computations in (1.6)
and (1.7). On the other have the above expression also equals to

2n∑
i=1

∫
(ai−1,ai)

f(z)

z

∞∑
m=0

(z1

z

)m
dz =

∞∑
m=0

zm1

2n∑
i=1

∫
(ai−1,ai)

f(z)

zm+1
dz (1.8)

This converges uniformly when |z1| < R′ and |z| > R′′. Notice that f(z) for
z ∈ DR′′′(0) is uniformly bounded and |z−m| < (R′′′)−m so for each integral
we have the bound∣∣∣∣∫

(ai−1,ai)

f(z)

zm+1
dz

∣∣∣∣ ≤ ‖f1DR′′′ (0)‖sup(R′′′)−m−1|ai − ai−1|.

Finally since via geometrical considerations we have that
∑2n

i=1 |ai − ai−1| ≤
2πR′′′ by we have that each coefficient satisfies the bound∣∣∣∣∣

2n∑
i=1

∫
(ai−1,ai)

f(z)

zm
dz

∣∣∣∣∣ < 2π(R′′′)−m‖f1DR′′′ (0)‖sup.

This implies that the series (1.8) has a convergence radius given at least by
R′′′.
Finally we remark a nice formula for the contour integral of 1

z
over the unit

circle S1 = {z ∈ C : |z| = 1}. Notice that the function 1
z

does not fall into
the class of functions we have defined complex countour integrals for. As a
matter of fact 1

z
is defined on the punctured disk DR(0) \ {0} for any R > 0

and is complex differentiable in any point where it is defined. However 1
z

is not even continuous in z = 0 and as such none of the above theorems
apply to it in the standard form. In particular we have seen that the integral
over a triangle (a, b, c) containing 0 of 1

z
is non-zero and equal to 2πi if it is

counterclockwise (positive) oriented.
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However we can define the path integral over a sufficiently smooth path
γ : [a, b] 7→ C by setting∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

Here we intend that that the parametrization of the circle is counterclockwise
and is given by γ : t ∈ [0, 2π) 7→ eit ∈ S1 so that∫

S1

1

z
dz =

∫ 2π

0

1

γ(t)
γ′(t)dt =

∫ 2π

0

1

eit
ieitdt = 2πi.

This discussion justifies spending some time on definig path integrals for
complex functions and highlighting the important aspects of path integrals
of complex differentiable functions specifically.

Definition 1.16 (Non self-intersecting curve C in C). A non self-intersecting
curve C in C is the graph of an injective continuous path γ : [a, b] 7→ C.

Note that if C is a curve that is a graph of γ : [a, b] 7→ C ⊂ C then γ is
bijective γ−1 : C 7→ [a, b] is also continuous.
We can see this by reasoning by contradiction. Clearly the inverse γ−1 : C 7→
[a, b] is defined pointwise because of the injectivity of γ. Suppose that the
inverse γ−1 is not continuous. That means that there exist two sequences of
(tn) ,

(
t̃n
)

such that

lim inf
n→∞

|tn − t̃n| = ε > 0 lim
n→∞

|γ(tn)− γ(t̃n)| = 0.

Since the interval [a, b] is compact we can restrict ourselves to a subsequence
such that

lim
n→∞

tn = t ∈ [a, b] lim
n→∞

t̃n = t̃ ∈ [a, b] lim inf
n→∞

|tn − t̃n| > ε.

Thus |t − t̃| > ε but by the continuity of γ we have that limn→∞ γ(tn) =
limn→∞ γ(t̃n) = γ(t) = γ(t̃). This contradicts injectivity since t 6= t̃.
Suppose now that two paths γ1 : [a1, b1] 7→ C and γ1 : [a2, b2] 7→ C have the
same image C and suppose that C is continuous and non self-intersecting.
Then γ−1γ2 : [a2, b2] 7→ [a1, b1] is a continous bijection with continuous in-
verse. The domain of this function and its image are real intervals, thus the
function must be monotone and the image of {a2, b2} must be {a1, b1}. We
can thus define the direction of parameterization by asking that γ1 and γ2

paramtetrize C in the same direction if γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2).
We can identify a directed non self-intersecting graph C ⊂ C by the family of
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all paths that parametrize C in the same direction. This procedure induces
a well defined order on C by imposing

γ(t1) < γ(t2) ⇐⇒ t1 < t2.

Furthermore an odering, together with the fact that C is in (ordered) bijec-
tion with a closed real interval shows that sup, inf exists of any subset of C
and lim sup lim inf of a sequence zn ∈ C is also well defined. Actually to be
able to define these notions we do not need C the parametrization.
With such a notion of ordering we can define a non-intersecting curve C to
be rectifiable if

sup
n,z0<···<zn
z0,...zn∈C

n∑
i=1

|zi − zi−1| <∞.

Its arc-length parametrization is then given by introducting the function

β : C 7→ [0, L] β(z) = sup
n,z0<···<zn<Z
z0,...zn∈C

n∑
i=1

|zi − zi−1|.

We leave the following as an exercise

Exercise 1.17 (Arc Length Parametrization). β−1 is a parametrization of C
by a segment [0, L] and β−1 is 1-Lipschitz i.e. |β−1(t2)− β−2(t2)| ≤ |t2− t1|.
We call L the length of the curve

For rectifiable curves the concept of path integrals is natural

Definition 1.18 (Path integral).∫
C

f(z)dz := lim
ε→0

∑
a=z0<···<zn=b
|zi−zi−1|<ε

f(zi)(zi − zi−1)

End of lecture 4. April 21, 2016

Some additional comments regarding the path integral are in order. We also
allow curves with self-intersections. Let Ω ⊂ C be open and γ : [a, b] → Ω
Lipschitz, i.e. there exists L <∞ such that for all t1, t2 ∈ [a, b] we have

|γ(t2)− γ(t1)| ≤ L|t2 − t1|.
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We want to allow curves with self-intersections; thus we are not asking γ to
be injective.
Our Lipschitz assumption has several consequences. The function Re γ is of
bounded variation:

sup
a<t0<···<tN<b

|Re γ(tn)− Re γ(tn−1)| < L|b− a|

and similarly for Im γ. Both Re γ and Im γ are also absolutely continuous,
i.e. for all ε > 0 there exists δ > 0 such that

N∑
n=1

|γ(t2n)− γ(t2n−1)| < ε if
N∑
n=1

|t2n − t2n−1| < δ.

This implies differentiability almost everywhere with a derivative bounded
in L∞. We also have∫ x

a

(Re γ(t))′dt = Re γ(x)− Re γ(a).

The same holds for Im γ.

Definition 1.19. For f : Ω→ C continuous and γ : [a, b]→ Ω Lipschitz we
define ∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt

Theorem 1.20. Let Ω ⊂ C be open, f : Ω→ C continuous and γ : [a, b]→ Ω
Lipschitz. Then for all ε > 0 there exists δ > 0 such that for all partitions
a = t0 < · · · < tN = b with |tn − tn−1| < δ we have∣∣∣∣∣

∫
γ

f(z)dz −
N∑
n=1

f(γ(tn))(γ(tn)− γ(tn−1)

∣∣∣∣∣ < ε.

Proof. We write∫
γ

f(z)dz =
N∑
k=1

∫ tn

tn−1

f(γ(t))γ′(t)dt

=
N∑
n=1

(∫ tn

tn−1

f(γ(tn))γ′(t)dt+

∫ tn

tn−1

(f(γ(t))− f(γ(tn)))γ′(t)dt
)

The first term equals

N∑
n=1

f(γ(tn))(γ(tn)− γ(tn−1))
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by the fundamental theorem of calculus for absolutely continuous functions.
We can estimate the second term by exploiting uniform continuity of f ◦γ on
[a, b]. Namely, choose δ > 0 small enough so that |f(γ(t))−f(γ(t′))| < ε

L(b−a)

whenever |t − t′| < δ. Here L is the Lipschitz constant of γ. Then we can
estimate the error term as follows:∣∣∣∣∣

N∑
n=1

∫ tn

tn−1

(f(γ(t))− f(γ(tn)))γ′(t)dt

∣∣∣∣∣ <
N∑
n=1

(tn − tn−1)
ε

b− a
= ε.

The path integral is invariant under reparametrization. Assume that s :
[a, b]→ [ã, b̃] is monotonously increasing, bijective and the new path

γ̃ : [ã, b̃]→ C, γ(t) = γ̃(s(t)) for all t ∈ [a, b]

is Lipschitz. Then
∫
γ
f(z)dz =

∫
γ̃
f(z)dz. This can be shown by an appeal

to the Riemann-Stieltjes sums from above (exercise).

Definition 1.21. Let Ω ⊂ C be open. A function f : Ω→ C is holomorphic
in a point z0 ∈ C if it is complex dfferentiable in a disc DR(z0) ⊂ Ω.

The path integral leads to a simple way to exhibit (local) primitives of holo-
morphic functions. Let Ω = DR(z0) and f holomorphic, then there exists F
with F ′ = f and ∫

γ

f(z)dz = F (γ(b))− F (γ(a))

because F ◦ γ is Lipschitz.

(F ◦ γ)′(t) = F ′(γ(t))γ′(t).

The existence of a primitive depends on the topology of the domain (in fact
it needs to be simply connected). For example, let Ω = C\{0}. The function
f(z) = 1/z is holomorphic on Ω, but has no primitive on Ω.
We can exploit this property of holomorphic functions to define path integrals
along curves γ : [a, b]→ Ω which are merely required to be continuous.

Definition 1.22. Let f : Ω → C be holomorphic and γ : [a, b] → Ω contin-
uous. We define the path integral

∫
γ
f(z)dz as follows.

For all t ∈ [a, b] we find δt and δ̃t such that Dδt(γ(t)) ⊂ Ω and for all t̃ with

|t̃ − t| < δ̃t we have that γ(t̃) ∈ Dδt(γ(t)). Since [a, b] is compact we can
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select finitely many tn such that the intervals
(
tn − δ̃tn

3
, tn + δ̃tn

3

)
cover [a, b].

Let δ = minn
δtn
3

. For all t ∈ [a, b] there is an n such that for all |t̃ − t| < δ
we have γ(t̃) ∈ Dδtn (γ(tn)). Find a partition a = s0 < · · · < sN = b with
maxn |sn− sn−1| < δ. Let Fn be a primitive of f on Dδtn (γ(tn)). Now we can
define ∫

γ

f(z)dz :=
N∑
n=1

Fn(γ(sn))− Fn(γ(sn−1)).

It remains to show that this definition is independent of the involved choices
(exercise).
We turn our attention now to several very typical properties of holomorphic
functions.

Theorem 1.23 (Mean value property). Let f holomorphic on DR(z0). Then
for r < R we have

1

2π

∫ 2π

0

f(z0 + reit)dt = f(z0).

Proof. Define

g(z) =
f(z)− f(z0)

z − z0

with the understanding that g(z0) = f ′(z0). Then g is also holomorphic on
DR(z0). Let γ : [0, 2π] → DR(z0), γ(t) = z0 + reit. Then,

∫
γ
g(z)dz = 0.

That is,∫
γ

f(z)

z − z0

dz =

∫
γ

f(z0)

z − z0

dz = f(z0)

∫ 2π

0

1

reit
ireitdt = 2πif(z0).

On the other hand,∫
γ

f(z)

z − z0

dz =

∫ 2π

0

f(z0 + reit)

reit
ireitdt = i

∫ 2π

0

f(z0 + reit)dt.

The claim follows.

Theorem 1.24 (Maximum principle). Let Ω ⊂ C be open and connected, f
holomorphic on Ω. If |f | assumes its maximum value at z0 ∈ Ω, then f is
constant.

In other words, non-constant holomorphic functions assume their maxima on
the boundary of the domain of definition.
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Proof. Let f 6≡ 0. Define g(z) = f(z) |f(z0)|
f(z0)

. Then g(z0) = |f(z0)| and for all
z ∈ Ω,

Re g(z) ≤ g(z0)

Consider h(z) = g(z)− g(z0). Then Reh(z) ≤ 0. Choose r with Dr(z0) ⊂ Ω.
By the mean value property,

0 = h(z0) =
1

2π

∫ 2π

0

Reh(z0 + reit)dt.

Since Reh is continuous and non-positive, we must have Reh(z0 + reit) =
0 for all t. Also, Reh(z0 + r̃eit) = 0 for all t, r̃ < r. By the Cauchy-
Riemann equations we obtain ∂

∂x
Imh = 0 and ∂

∂y
Imh = 0. Therefore h, and

consequently also f , is constant in a neighborhood of z0. Thus we proved
that the non-empty set {z ∈ Ω : f(z) = f(z0)} is open. By continuity of f ,
it is also closed so it must equal Ω because Ω is connected.

Definition 1.25 (Entire functions). A holomorphic function f : C → C is
called entire.

Theorem 1.26 (Liouville). Let f be an entire function. If f is bounded,
then it is constant.

Proof. Consider g(z) = f(z)−f(z0)
z−z0 , g(z0) = f ′(z0) for an arbitrary z0 ∈ C.

Then g is again entire and for all ε > 0 such that for all |z − z0| > 1/ε we
have

|g(z)| ≤ Cε.

By the maximum principle, |g(z)| ≤ Cε for all z ∈ D1/ε(z0). Since ε was
arbitrary, g ≡ 0.

Theorem 1.27. Let f be entire and bijective with holomorphic inverse. Then
there exist a, b ∈ C such that

f(z) = az + b.

Proof. Let z0 be such that f ′(z0) 6= 0 (exists because f cannot be constant).
Without loss of generality suppose that z0 = 0 (by translating the function).
Also assume that f(0) = 0 (by subtracting f(0) from f). Then the function
h(z) = f(z)/z, h(0) = f ′(0) is entire and vanishes nowhere (since f(z) 6= 0
for z 6= 0 by injectivity). Thus also

g(z) =
1

h(z)
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is an entire function. We claim that it is also bounded. By continuity of
f−1, there is ε > 0 such that for all |ξ| < ε, |f−1(ξ)| ≤ 1. Thus, for |z| > 1,
|f(z)| ≥ ε, so |g(z)| ≤ 1

ε
. For |z| ≤ 1 we have boundedness by continuity. By

Liouville’s theorem, g is a constant and the claim follows.

Theorem 1.28. Let f : Ω → C be holomorphic and non-constant. Assume
f(z0) = 0 for a given z0 ∈ Ω. Then there exists δ > 0 with f(z) 6= 0 for all
z ∈ Dδ(z0)\{z0}.

This theorem shows that zeros of holomorphic functions are isolated.

Proof. Without loss of generality we assume z0 = 0 (by translating the func-
tion). Write

f(z) =
∞∑
n=N

anz
n = zN

∞∑
n=N

anz
n−N

with aN 6= 0, N ≥ 1. By continuity, there exists δ > 0 such that
∑∞

n=N anz
n−N 6=

0 for all z ∈ Dδ(0).

Theorem 1.29. Let f : Ω → C be holomorphic and non-constant. Then f
is open (i.e. f(Ω) ⊂ C is an open set).

Proof. Let w0 ∈ f(Ω). Then there is z0 ∈ Ω such that f(z0) = w0. We
argue by contradiction and suppose that w0 is not in the interior of f(Ω).
Thus, for every ε > 0 there exists ξ ∈ Dε(w0) such that ξ 6∈ f(Ω). By the
previous theorem we pick δ such that f(z)−w0 6= 0 for z ∈ Dδ(z0)\{z0}. Let
0 < r < δ. The set K = {z0+reit : t ∈ [0, 2π]} is compact. Thus there exists
ε0 > 0 such that |f(z)−w0| > ε0 for all z ∈ K. Now take ξ ∈ Dε0/2(w0) such
that ξ 6∈ f(Ω). Then the function

g(z) =
1

f(z)− ξ

is holomorphic in Ω. For z ∈ K we have

|g(z)| ≤ 1

|f(z)− w0| − |w0 − ξ|
<

1

ε0 − ε0/2
=

2

ε0

.

But,

|g(z0)| = 1

|w0 − ξ|
>

2

ε
.

This contradicts the maximum principle applied to g.

End of lecture 5. April 25, 2016
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