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1 Fundamentals

A complex number is a pair (x, y) of real numbers. The space C = R2 of
complex numbers is a two-dimensional R-vector space. It is also a normed
space with the norm defined as

|(x, y)| =
√
x2 + y2.

This is the usual Euclidean norm and induces the structure of a Hilbert space
on C. An additional feature that makes C very special is that it also has a
product structure defined as follows (that product is not to be confused with
the scalar product of the Hilbert space).

Definition 1.1 (Product of complex numbers). For two complex numbers
(x1, y1), (x2, y2) ∈ C, their product is defined by

(x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + y1x2).

∗Notes by Joris Roos and Gennady Uraltsev.
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This defines a map C × C → C. It can be rewritten in terms of another
product, the matrix product:

(x1, y1)(x2, y2) = (x1, y1)

(
x2 y2

−y2 x2

)
.

In fact, we can embed the complex numbers into the space of real 2 × 2
matrices via the linear map

C −→ R2×2

(x, y) 7−→
(

x y
−y x

)
.

The map translates the product of complex numbers into the matrix product.
This is very helpful to verify some of the following properties:

1. Commutativity (follows directly from the definition),

2. Associativity,

3. Distributivity,

4. Existence of a unit:

(x1, y1) = (1, 0)(x1, y1), and

5. Existence of inverses: if (x, y) 6= 0, then

(x, y)

(
x

x2 + y2
,
−y

x2 + y2

)
=

(
x2 + y2

x2 + y2
,
xy − yx
x2 + y2

)
= (1, 0).

In terms of the matrix representation this property is based on the fact

that non-zero matrices of the form

(
x y
−y x

)
are always invertible:

det

(
x y
−y x

)
= x2 + y2 6= 0 (1.1)

for (x, y) 6= 0. It also entails that the inverse matrix is again of that
form.

Summarizing, the product of complex numbers gives C the structure of a
field. The existence of such a product makes R2 unique among the higher
dimensional Euclidean spaces Rd, d ≥ 2. Roughly speaking, the reason for
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this phenomenon is the very special structure of the above 2×2 matrices. In
higher dimensions it becomes increasingly difficult to find a matrix represen-
tation such that Property 5 is satisfied. The only cases in which it is possible
at all give rise to the quaternion (d = 4) and octonion (d = 8) product,
neither of which is commutative (and the latter is not even associative).

Another important property is that we have compatibility of the product
with the norm:

|(x1, y1)(x2, y2)| = |(x1, y1)| · |(x2, y2)|.

This is a consequence of the determinant product theorem and the identity

|(x, y)| =

√
det

(
x y
−y x

)
.

One consequence of this is that for fixed (x1, y1), the map (x1, y1) 7→ (x1, y1)(x2, y2)
is continuous (but of course this can also be derived differently).
We now proceed to introduce the conventional notation for complex numbers.

Definition 1.2. We write 1 = (1, 0) to denote the multiplicative unit.
i = (0, 1) is called the imaginary unit. A complex number (x, y) is written
as

z = x+ iy.

x =: Re (z) is called the real part and y =: Im (z) the imaginary part. The
complex conjugate of z = x+ iy is given by

z = x− iy

We have the following identities:

i2 = (0, 1)(0, 1) = (−1, 0) = −1,

|z|2 = zz = (x+ iy)(x− iy) = x2 + y2,

1

z
=

z

|z|2
.

The product of complex numbers has a geometric meaning. Observe that
the unit circle in the plane consists of those complex numbers z with |z| = 1.
Say that z1, z2 lie on the unit circle. That is, |z1| = 1, |z2| = 1. Then also
|z1z2| = |z1| · |z2| = 1, so also z1z2 is on the unit circle. So the linear map
C→ C, z1 7→ z1z2 maps the unit circle to itself. Recall that there are not too
many linear maps with this property: only rotations and reflections. Since
the determinant is positive by (1.1), it must be a rotation.
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z1

z2

z1z2

Every non-zero complex number can be written as the product of one on the
circle and a real number:

z =
z

|z|
|z|

Multiplication with a real number corresponds to stretching, so we conclude
from the above that multiplication with a complex number corresponds to a
rotation and stretching of the plane.

Example 1.3. We use our recently gained geometric intuition to derive a cu-
rious formula for the square root of a complex number. Look at the following
picture.

z 1 + z

1

z̃
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We have given some z with |z| = 1 and would like to find z̃ with z̃2 = z. The
picture suggests to pick

z̃ =
1 + z

|1 + z|
.

Indeed we have

z̃2 =
(1 + z)2

(1 + z)(1 + z)
=

1 + z

1 + z
=
zz + z

1 + z
= z

1 + z

1 + z
= z.

Now let z 6= 0 be a general complex number and apply the above to z
|z| . Then

the square roots of z are given by

√
z = ±

1 + z
|z|∣∣∣1 + z
|z|

∣∣∣
√
|z|.

We now turn our attention to functions of a complex variable f : C→ C. A
prime example is given by complex power series:

∞∑
n=0

anz
n = lim

N→∞

N∑
n=0

anz
n.

To find out when this limit exists we check when the sequence of partial sums
is Cauchy. Take M < N and compute:∣∣∣∣∣

N∑
n=0

anz
n −

M∑
n=0

anz
n

∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=M+1

anz
n

∣∣∣∣∣ ≤
N∑

n=M+1

|anzn| =
N∑

n=M+1

|an| rn,

where r = |z|. This implies that if
∑∞

n=0 |an|rn converges in R, then
∑∞

n=0 anz
n

converges in C. Next,
∑∞

n=0 |an|rn < ∞ holds if there exists r̃ > r with
supn |an|r̃n <∞ because

∞∑
n=0

|an|rn =
∞∑
n=0

anr̃
n
(r
r̃

)n
≤
(

sup
n
|an|r̃n

) ∞∑
n=0

(r
r̃

)n
<∞.

Definition 1.4. The convergence radius of a power series
∑∞

n=0 anz
n is de-

fined as
R := sup{r̃ : sup

n
|an|r̃n <∞}.

• For z ∈ DR(0) = {z : |z| < R}, the sum
∑∞

n=0 anz
n converges.

• For |z| > R, the sum
∑∞

n=0 anz
n diverges.
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• For |z| = R both convergence and divergence are possible.

Examples 1.5. The exponential series

ez :=
∞∑
n=0

1

n!
zn.

has convergence radius R =∞. The same holds for

cos(z) :=
∞∑
n=0

(−1)n

(2n)!
z2n,

sin(z) :=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1.

These combine to give the Euler formula,

eiz = cos(z) + i sin(z).

From Analysis I we know1 that

ez1+z2 = ez1ez2

for all z1, z2 ∈ C.

These properties imply that for ϕ real, eiϕ lies on the unit circle, in other
words that sin(ϕ)2 + cos(ϕ)2 = 1:

sin(ϕ)2 + cos(ϕ)2 = |eiϕ|2 = eiϕeiϕ = eiϕe−iϕ = eiϕ−iϕ = e0 = 1.

Remark 1.6. General polynomials in x, y on R2 are of the form

N∑
n,m=0

an,mx
nym =

N∑
n,m=0

an,m

(
z + z

2

)n(
z − z

2i

)m
=

N∑
n,m=0

bn,mz
nzm.

In complex analysis we only consider the case bn,m = 0 for m 6= 0.

Definition 1.7. Let Ω ⊂ C be open. A function f : Ω→ C is called complex
differentiable at z ∈ Ω if there exists δ > 0 such that Dδ(z) := {w ∈ C :
|z − w| < δ} ⊂ Ω and the function o, defined by the equation

f(z + h) = f(z) + hg(z) + o(h), (1.2)

has the property that for all ε > 0 there exists δ > 0 with |o(h)| < ε|h| for
all |h| < δ.

1Precisely speaking, we only proved it for real numbers, but the proof is literally the
same.
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Theorem 1.8. If f(z) =
∑∞

n=0 anz
n has convergence radius R, then

g(z) =
∞∑
n=1

nanz
n−1 =

∞∑
n=0

(n+ 1)an+1z
n

also has convergence radius R and for |z| < R, f is complex differentiable at
z.

Proof. We already know how to differentiate power series from real analysis.
The proof of this theorem works exactly the same way as in the real case:

f(z + h) =
∞∑
n=0

an(z + h)n =
∞∑
n=0

(
anz

n + nhzn−1 +
n∑
k=2

an

(
n

k

)
hkzn−k

)
= f(z) + hg(z) + o(h)

and∣∣∣o(h)

h

∣∣∣ ≤ |h| ∞∑
n=0

|an|n2

n−2∑
k=0

(
n+ 2

k

)
|h|k|z|n+2−k ≤ |h|

∞∑
n=0

|an|n2(|z|+ |h|)n+2.

Compare this to the real Taylor series in R2: let f : R2 → R2 be totally
differentiable in z, then there exists a matrix A with

f(z + h) = f(z) + Ah+ o(h) (1.3)

and for all ε > 0 there exists δ > 0 such that |o(h)| ≤ ε|h| for |h| < δ. Note
that the product in (1.3) is the matrix product and the product in (1.2) is
the product of complex numbers. They coincide if and only if

A =

(
a b
−b a

)
.

Thus we find that a function f(z) = (u(x, y), v(x, y)) that is (real) totally
differentiable at z is complex differentiable at z if and only if

∂u

∂x
(z) =

∂v

∂y
(z) and

∂u

∂y
(z) = −∂v

∂x
(z). (1.4)

These are called the Cauchy-Riemann differential equations.

End of lecture 1. April 11, 2016
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We will now study some properties of functions on an open complex disk.
In particular we will concentrate on the question of regularity and differen-
tiability. In the previous lecture we have mentioned that power series are
complex differentiable inside the disk of the radius of convergence. To estab-
lish notation let us introduce the following sets.
A We denote by A the set of all power series

A :=

{
∞∑
n=0

anz
n : an ∈ C, z ∈ DR(0)

}
with radius of convergence at least R > 0 so that for all z in the do-
main DR(0) = {z : |z − 0| < R} the series converges absolutely (equivalently
supn|an|τn <∞ for any 0 ≤ τ < R).
As noted previously, A is a subset of the set of all formal power series onDR ⊂
C given by

∑∞
m,n=0 bn,mx

nym with x = Re (z), y = Im (z). Equivalently these
formal series can be expressed as

∑∞
n,m=0 an,mz

nz̄m and A puts both a
on the growth of the coefficients an,m given by the condition of being conver-
gent on DR(0) and the additional constraint that an,m = 0 unless m = 0.
B We denote by B the set of functions that are complex differentiable in
every point of the open disk DR(0). In particular, as per condition (1.2), B
consists of those functions f : DR(0) 7→ C such that for any point z ∈ DR(0)
and for any increment h : |z| + |h| < R there exists the complex derivative
g(z) ∈ C i.e. a complex coefficient such that

f(z + h) = f(z) + hg(z) + o(h)

where o(h) is some function (depending on z) for which for any ε > 0 there
exists a ∃δ > 0 such that for any |h| < δ, |z| + |h| < R we have that
o|h| ≤ ε|h|. Recall that this is related to total differentiability on C ≡ R2.
As a matter one can write the following for a totally differentiable function
on C:

f(z + h) = f(z) + A(z)h+ o(h) A(z) =

(
a(z) b(z)
c(z) d(z)

)
.

Complex differentiability is equivalent to asking the differential as a linear
map A : R2 7→ R2 can be represented by complex multiplication: A(z)h =
g(z)h for some g(z) ∈ C. This holds if and only if a(z) = d(z) and b(z) =
−c(z).
Let us recall the Cauchy-Riemann equations (1.4) and elaborate how they
are related to complex differentiability. Setting f(z) = (u(x, y), v(x, y)), the
equations are given by

∂u(x, y)

∂x
=
∂v(x, y)

∂y

∂u(x, y)

∂y
= −∂v(x, y)

∂x
.
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We can rewrite this equation by defining the following two differential oper-
ators called ∂

∂z
and ∂

∂z̄
by setting

∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
∂

∂z̄
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
.

Once again setting f(x, y) = u(x, y) + iv(x, y) we can compute

∂f

∂z̄
=

1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

))
= 0

It is apparent that the two Cauchy-Riemann equations are just the real and
imaginary part of ∂f

∂z̄
. Since we have already mentioned that complex dif-

ferentiability is equivalent to a condition on the differential matrix A that
corresponds to the Cauchy-Riemann equations in terms of partial derivatives,
it follows that a function is complex differentiable if and only if it is totally
differentiable and has ∂f

∂z̄
= 0. Furthermore, if f is complex differentiable

then we write

f ′(z) :=
∂

∂z
f(z).

Finally, in terms of the the real and imaginary part separately we have

∂

∂z
f(z) =

1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
.

C We denote by C the subset of continuous functions f : DR(0) 7→ C such
that the following integral condition holds∫

(a,b,c)

f(z)dz = 0 ∀a, b, c ∈ DR(0).

Here (a, b, c) is the (oriented) boundary of the (oriented) triangle, also re-
ferred to as a simplex, formed by the points a, b, and c. We will identify
(a, b, c) by the closed path composed of the three segments a→ b→ c→ a.
The above integral is a special case of an integral along a path of a complex
function. For now we restrict ourselves to the case were the support of the
path is a complex segment, parametrized in linear fashion.

Definition 1.9 (Integral of a complex function along a segment). Consider
the segment (a, b) with a, b ∈ C and a complex-valued continuous function
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f : Ω ⊂ C 7→ C defined on an open neighborhood of (a, b). We set the
integral of the function f along (a, b) to be∫

(a,b)

f(z)dz :=

∫ 1

0

f (bt+ a(1− t)) (b− a)dt.

Here the integrand on the right hand side is a function [0, 1] 7→ C ≡ R2

and the integral is simply calculated coordinate-wise. Notice however that
the integrand itself f (bt+ a(1− t)) ·(b − a) is expressed itself as a complex
product.

a

b

Figure 1: A segment defining a path from a to b.

This definition of the integral over a segment corresponds to the well known
concept of a path integral, and extends it to complex functions:

∫
(a,b)

f(z)dz =

∫ 1

0

f (bt+ a(1− t)) (b−a)dt =

∫
γ

fdγ =

∫ 1

0

f(γ(t))γ′(t)dt

with γ(t) = bt+a(1−t) as the path that parameterizes the segment. We nat-
urally extend this definition to the three oriented segments of the boundary
of a triangle by setting∫

(a,b,c)

f(z)dz :=

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz.

Finally notice that the definition of integrating along a path is oriented and
as such we have ∫

(a,b)

f(z)dz = −
∫

(b,a)

f(z)dz.

This can be easily verified by a change of variables.
The characterization of the set C in terms of path integrals is geometric
and does not rely on the smoothness of f . As a matter of fact we require f
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a

b

c

Figure 2: A triangle and its oriented boundary.

merely to be continuous. However we will now see that integral over triangles
condition over all possible triangles implies stronger structure results and in
particular that f is actually smooth and complex differentiable.

Theorem 1.10. The classes of functions we introduced coincide i.e. A =
B = C.

A ⊂ B The rules of differentiation of power series imply immediately the
inclusion A ⊂ B.
A ⊂ C We will now show directly that the path integral of a power series
along a closed path, and specifically (a, b, c) is zero. In previous courses of
analysis we have seen a similar statement for gradient fields and the proof
followed from the existence of a primitive. We can, however, deduce the
existance of a primitive of a power series formally and this will provide us
with the needed elements to adapt a similar approach.
Recall the definition of the set A: f ∈ A is of the form f(z) =

∑∞
n=0 anz

n.
Let us define its primitive via

F (z) :=
∞∑
n=0

1

n+ 1
anz

n+1.

Clearly F ∈ A since it is a power series and its radius of convergence is
not smaller than that of f . This follows simply from the bound on the nth

coefficient of F by that of f :

1

n+ 1
|an| ≤ |an|.

We claim that F is effectively a primitive of f and in particular∫
(a,b)

f(z)dz =

∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a).

11



The first equality is just the definition of a complex path integral. To show
the second equality let us define g(y) = F (γ(t)) with γ(t) = a(1− t) + bt and
let us show that

g′(t) = f (a(1− t) + bt) (b− a).

This is essentially the chain rule for complex-valued complex differentiable
functions. We write

g(t+ h) = F (γ(t+ h)) = F (γ(t) + (b− a)h)

= F (γ(t)) + (b− a)hf (γ(t)) + o ((b− a)h)

= g(t) + (b− a)hf (γ(t)) + o ((b− a)h)

Here we used that the complex differential of F in γ(t) is given by f (γ(t))
and that (b− a)h is a small complex increment. Notice also that h is a real
increment. We have thus that∫ 1

0

f (a(1− t) + bt) (b− a)dt = F (b)− F (a)

and ∫
(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz

=F (b)− F (a) + F (c)− F (b) + F (a)− F (c) = 0

B ⊂ C This statement is known as “Theorem of Goursat”. Let f ∈ B be
complex differentiable in DR(0). We must show that for any r̃ < R and
∀a, b, c ∈ Dr̃(0) one has

∫
(a,b,c)

f(z)dz = 0. It is sufficient to show that for

any ε > 0 and ∀a, b, c ∈ Dr̃(0) we have that∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ ≤ εmax (|b− a|, |c− b|, |a− c|)2 .

The argument we present relies on an induction on scales. The term

max (|b− a|, |c− b|, |a− c|)2

on the right hand side of the above entry is a measure of the scale of “how
large” or the scale of the triangle. We will show that the statement holds for
triangles that have sufficiently small scale and then to an induction argument
that will show that is the statement holds for a certain scale it also holds for
triangle up to twice as large. This would allow us to conclude the statement
for all triangles.
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Part 1: We start by showing that the above bound holds for all points
a, b, c ∈ Dr̃(0) with max (|b− a|, |c− b|, |a− c|) < δmin for some δmin > 0.
For any z ∈ Dr̃(0) there exists δ = δ(z) such that ∀|h| < δ we have

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

8
|h|.

Reasoning by compactness we can find a finite set z1, . . . , zN such that
Dr̃(0) ⊂

⋃N
j−1Dδ(zi)/3(zi) where δ(zi) is the radius for which the above bound

holds. Setting δmin := mini δ(zi)
3

one has that ∀z ∈ Dr̃(0) ∀|h| < δmin we have
via the triangle inequality

f(z + h) = f(z) + hf ′(z) + o(h) with |o(h)| < ε

4
|h|.

z0

δ(z0)
3

a

b

c

Figure 3: A triangle in a small circle

Now consider two point a, b with |b− a| < δmin. We can evaluate the contri-
bution of the three terms of the expansion of f to the line integral.∫

(a,b)

f(z)dz =

∫
(a,b)

f(z0) + (z − z0)f ′(z0) + o(z − z0)dz

The first term gives ∫ 1

0

f(z0)(b− a)dt = f(z0)(b− a).
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The second term gives∫ 1

0

f ′(z0) (bt− a(1− t)− z0) (b− a)dt

=f ′(z0)

(
1

2
(b+ a)(b− a)− a(b− a)− z0(b− a)

)
=f ′(z0)

(
1

2
(b2 − a2) + z0(b− a)

)
We have crucially used complex differentiability of f here. As a matter
of fact the algebraic manipulation relied on the commutativity of complex
multiplication. If f were just any totally differentiable function then f ′(z0)
would be substituted by some arbitrary 2× 2 matrix and the above identity
would not necessarily hold.
Summing up the contributions of the three terms we obtain∫

(a,b,c)

f(z)dz =

∫
(a,b)

f(z)dz +

∫
(b,c)

f(z)dz +

∫
(c,a)

f(z)dz =

= f(z0)(b− a+ c− b+ a− c)

+ f ′(z0)

(
1

2
(b2 − a2 + c2 − b2 + a2 − c2) + z0(b− a+ c− b+ a− c)

)
+

∫
(a,b,c)

o(z − z0)dz

All terms except the last vanish while for the last we have the bound∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a,b,c)

o(z − z0)dz

∣∣∣∣
<
ε

4
(|b− a|+ |c− b|+ |a− c|) max

z∈(a,b,c)
|z − z0|

<
3ε

4
max (|b− a|, |c− b|, |a− c|)2

as required.
Part 2: We have now proved that the bound we seek holds for triangles
that are small enough. In particular we require that max(|b− a|, |c− b|, |a−
c|) < δmin. We will now show an inductive procedure that shows that if the
statement holds for when max(|b − a|, |c − b|, |a − c|) < δ then the same is
true if max(|b− a|, |c− b|, |a− c|) < 2δ.
The main idea is given by decomposing a triangle into smaller triangles in a
uniform way.
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a

b

c

a′

b′

c′

Figure 4: Decomposing triangles into smaller ones

To do so we use the median points as shown in figure 4. Let a′, b′, c′ be the
median points of the sides of (a, b, c) opposite of the respective vertices. We
have∫

(a,b,c)

f(z)dz =

∫
(a,c′,b′)

f(z)dz +

∫
(b,a′,c′)

f(z)dz +

∫
(c,b′,a′)

f(z)dz

+

∫
(a′,b′,c′)

f(z)dz∣∣∣∣∫
(a,b,c)

f(z)dz

∣∣∣∣ < ε
(

max (|c′ − a|, |b′ − c′|, |a− b′|)2
+ max (...)2 + max (...)2

+ max (|b′ − a′|, |c′ − b′|, |a′ − c′|)2
)

< 4ε
max (|b− a|, |c− b|, |a− c|)2

4

as required. The crucial observation is that once we divide by the medians
we obtain four triangles for which the largest of side lengths is bounded by
a small (1/2) factor of the lengths of the original triangle. This implies that
first of all we may apply the assumptions at previous scale and that we obtain
a bound with the same constant.

End of lecture 2. April 14, 2016

We will prove the following stronger version of Goursat’s theorem.

Theorem 1.11. Let z0 ∈ DR(0), f : DR(0) → C continuous and complex
differentiable at all points of DR(0)\{z0}. Then f ∈ C.
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Proof. It suffices to show that for all r̃ < R, a, b, c ∈ Dr̃(0) we have∫
(a,b,c)

f(z)dz = 0.

Let 10δ = R− r̃. By the same argument as in the proof of Goursat’s theorem
it suffices to show this for small triangles: for all a, b, c ∈ Dr̃(0) with max(|a−
b|, |b− c|, |c− a|) ≤ δ/10.
Case 1. z0 6∈ Dδ/3(a). Then

∫
(a,b,c)

f(z)dz = 0 holds by Goursat’s theorem.

Case 2. z0 ∈ Dδ/3(a). It suffices to show
∫

(a,b,z0)
f(z)dz = 0 because∫

(a,b,c)

=

∫
(a,b,z0)

+

∫
(b,c,z0)

+

∫
(c,a,z0)

.

We can also assume that the angle at z0 is acute (if it is not acute, we bisect
the angle at z0 and consider the two resulting triangles). Next, construct a
circle through z0 that contains (a, b, z0). We can do this such that the radius
is at most δ.
Let ε > 0 be arbitrary. We will show∣∣∣∣∫

(a,b,z0)

f(z)dz

∣∣∣∣ ≤ ε.

By continuity of f at z0 we can choose points a′ on (a, z0) and b′ on (b, z0)
such that |f(z)− f(z0)| < ε/(3δ) for all z on the triangle (a′, b′, z0).

a b

z0

a′ b′

By Goursat’s theorem we have∫
(a,b,b′)

f(z)dz =

∫
(a′,a,b′)

f(z)dz = 0

16



so that ∫
(a,b,z0)

f(z)dz =

∫
(a′,b′,z0)

f(z)dz.

We estimate,∣∣∣∣∫
(a′,b′,z0)

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
(a′,b′,z0)

f(z)− f(z0)dz

∣∣∣∣
≤
∫ 1

0

|f(b′t+ a′(1− t))− f(z0)||b′ − a′|dt+ · · ·︸ ︷︷ ︸
<ε

As a precursor to showing B ⊂ A we first prove the following.

Theorem 1.12. Let f : DR(0)→ C complex differentiable on DR(0). Then
for all z1 ∈ DR(0) there exists δ > 0 such that f can be represented by a
convergent power series on Dδ(z0) ⊂ DR(0).

Remark 1.13. In particular, this entails that functions which are complex
differentiable in a neighborhood are automatically infinitely often complex
differentiable.

This is a consequence of what is called Cauchy’s integral.

Proof. For w ∈ DR(0) we consider the function

gw(z) =
f(z)− f(w)

z − w

with the understanding that gw(w) = f ′(w). This function is continuous on
DR(0) and complex differentiable on DR(0)\{w}. Continuity of gw in w is a
consequence of complex differentiability of f in w. Complex differentiability
of gw in DR(0)\{w} follows by the product rule since f(z) − f(w) and 1

z−w
are both complex differentiable. Let us show the complex differentiability of
1
z

on C\{0} directly from the definition:

1

z + h
−1

z
=
z − (z + h)

z(z + h)
=
−h
z2

+
h

z2
− h

z(z + h)
= − h

z2
+

h2

z2(z + h)
=
−h
z2

+o(h)

where o(h) = h2/(z2(z + h)) so that

|o(h)| ≤ |h2|
∣∣∣∣ 1

z2(z + h)

∣∣∣∣ ≤ |h|2 ∣∣∣∣ 2

z3

∣∣∣∣ .
17



provided that |h| < |z|
2

.

Choose a, b, c ∈ DR(0) such that z0 lies in the interior of the triangle (a, b, c).
Further, pick δ > 0 small enough so that the circle of radius 2δ around z0 is
contained in the interior of the triangle (a, b, c).
Theorem 1.11 yields ∫

(a,b,c)

gw(z)dz = 0

for all w ∈ Dδ(z0). That is,∫
(a,b,c)

f(z)

z − w
dz =

(∫
(a,b,c)

dz

z − w

)
f(w)

Our claim is that ∫
(a,b,c)

dz

z − w
= ±2πi, (1.5)

where the sign is according to whether the triangle (a, b, c) is oriented counter-
clockwise (+) or clockwise (−). For the remainder of this proof, let us assume
it is oriented counter-clockwise. We defer the proof of this claim to the end
and first show how to use the equality

f(w) =
1

2πi

∫
(a,b,c)

f(z)

z − w
dz

to develop f into a convergent power series. The crucial point here is that on
the right hand side, the free variable w no longer occurs inside the argument
of f . Therefore we just need to know how to develop w 7→ 1

z−w into a power
series around z0:

1

z − w
=

1

(z − z0)(w − z0)
=

1

z − z0

· 1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
.

As a consequence,∫
(a,b,c)

f(z)

z − w
dz =

∫
(a,b,c)

1

z − z0

f(z)
∞∑
n=0

(
w − z0

z − z0

)n
dz

=
∞∑
n=0

(∫
(a,b,c)

f(z)

(z − z0)n+1
dz

)
(w − z0)ndz,

where the interchange of integration and summation is justified by uniform
convergence of the power series since 2|w−z0| < 2δ < |z−z0| by construction.

18



It remains to prove (1.5). For starters we calculate∫
(a,b)

1

z − w
dz =

∫ 1

0

b− a
(b− a)t+ a− w

dt =

∫ 1

0

1

t+ a−w
b−a

dt.

Temporarily denote a−w
b−a = x + iy with x, y real numbers. Decompose the

integral into real and imaginary part:∫ 1

0

1

t+ x+ iy
dt =

∫ 1

0

(t+ x)− iy
(t+ x)2 + y2

dt =

∫ 1

0

t+ x

(t+ x)2 + y2
dt+i

∫ 1

0

−y
(t+ x)2 + y2

dt.

Now we are only dealing with two real integrals that we can evaluate. The
first equals

1

2

∫ x+1

x

2t

t2 + y2
dt =

1

2

(
log((x+ 1)2 + y2)− log(x2 + y2)

)
= log

√
(x+ 1)2 + y2√
x2 + y2

.

(1.6)
The second equals

−
∫ x+1

x

y

t2 + y2
dt = −

∫ (x+1)/y

x/y

1

s2 + 1
ds = − arctan

(
x+ 1

y

)
+arctan

(
x

y

)
.

(1.7)

(x, y) (x+ 1, y)

The angle at 0 in the triangle (0, x + iy, x + 1 + iy) equals ±(1.7). Since
addition and multiplication with complex numbers preserves angles, that
angle equals the angle at w in the triangle (w, a, b) (the two triangles are
similar).
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For the same reason we have

log
|(x+ 1, y)|
|(x, y)|

= log
|b− w|
|a− w|

.

Applying the same reasoning to the other two segments (b, c), (c, a) we get

∫
(a,b,c)

1

z − w
dz =

=0︷ ︸︸ ︷
log

(
|b− w|
|a− w|

|c− w|
|b− w|

|a− w|
|c− w|

)
+i(ϕ1 + ϕ2 + ϕ3) = 2πi.

The last equality is by inspection of the figure:

a

b

c

w

ϕ1ϕ2

ϕ3

End of lecture 3. April 18, 2016

Let us recall the classes of complex-valued functions on the disk DR(0) that
we have introduced so far.

A :=

{
∞∑
n=0

anz
n : the series converges absolutely on DR(0)

}
B := {f : DR(0) 7→ C : f is complex differentiable ∀z ∈ DR(0)}

C :=

{
f : DR(0) 7→ C : f ∈ C(D;C),

∫
(a,b,c)

f(z)dz = 0 ∀a, b, c ∈ DR(0)

}
Additionally we have also introduced a new class Ã of functions that are
locally power series:

Ã :=

{
f : DR(0) 7→ C : f(z0 + h) =

∞∑
n=0

an(z0)hn ∀z0 ∈ DR(0) |h| < δz0

}
.
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where the local power series converges representation converges absolutely
for on a disk Dδz0

(z0).
We have already seen A ⊂ B, A ⊂ C, B ⊂ C.We will now pass to showing
the inclusion C ⊂ B and we will then conclude that B ⊂ A. It has already
been shown that B ⊂ Ã via an imporved Goursat’s theorem.

Proposition 1.14 (Morera’s Theorem: C ⊂ B). Let f : DR(0) 7→ C be a
continuous function such that for any three point a, b, c ∈ DR(0) one has∫

(a,b,c)

f(z)dz = 0.

Set F (z1) :=
∫

(0,z1)
f(z)dz for any point z1 ∈ DR(0). Then F is complex

differentiable in any point z and

F (z1 + h) = F (z1) +

∫
(z1,z1+h)

f(z)dz

if h ∈ C is such that z1 + h ∈ DR(0).

Proof. Clearly the contour integral condition applied to the triangle of the
points (0, z1 + h, z1) gives

F (z1 + h) =

∫
(0,z1+h)

f(z)dz

=

∫
(0,z1+h,z1)

f(z)dz +

∫
(0,z1)

f(z)dz +

∫
(z1,z1+h)

f(z)dz

= F (z1) +

∫
(z1,z1+h)

f(z)dz.

To obtain complex differentiability we estimate

F (z1 + h) = F (z1) +

f(z1)h︷ ︸︸ ︷∫
(z1,z1+h)

f(z1)dz+

∫
(z1,z1+h)

(f(z)− f(z1)) dz

= F (z1) + f(z1)h+

∫ 1

0

(f(z1 + ht)− f(z1))hdt = F (z1) + f(z1)h+ o(h)

with o(h) such that for all ε > 0 there exists a δ > 0 such that |o(h)| ≤∫ 1

0
|f(z1 + ht)− f(z1)| |h|dt ≤ ε|h| if |h| < δ. The last inequality follows

from the continuity of f .
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We already shown that B ⊂ Ã. Applying this to F shows that it is locally a
power series. In the above expression we have shown that f = F ′ and thus
f = F ′ formally as power series and it converges absolutely at least the same
radius on which F converges and thus f ∈ B.

We now prove the inclusion B ⊂ A. To do so we need a “global” argument.
The local argument gives B ⊂ Ã. We need to show that for any radius
R′ < R (and in particular we will need to choose radii R′ < R′′ < R′′′ < R)
the power series representing f ∈ Ã in 0 actually converges on DR′(0).

Remark 1.15. Notice that the power series of f ∈ Ã can be obtained in any
given point (in this case in 0) using the Taylor expansion

∞∑
n=0

anz
n =

∞∑
n=0

1

n!
fn(0)zn.

The identity can be checked by deriving both sides n times and evaluating
the expression in 0.

Figure 5: Discretization of an integral along a cirlce

For any fixed point z1 ∈ DR′(0) the function z 7→ f(z)−f(z1)
z−z1 is complex dif-

ferentiable at any point z ∈ DR′(0) \ {z1}. This is strait-forward by apply-
ing the chain rule to the composition and product of continuous, complex-
differentiable functions f(z)−f(z1) and 1

z−z1 . Furthermore z 7→ f(z)−f(z1)
is complex differentiable in z1 so

f(z)− f(z1) = f ′(z1)(z − z1) + o(z − z1).

This implies that f(z)−f(z1)
z−z1 is continuous in z1 and the value in z1 is precisely

f ′(z1). Let us choose a sequence of 2n points (a1, . . . , a2n) on the circle
{z ∈ C : |z| = R′′′} going counterclockwise so that the segements (ai−1, ai)
lie in DR′′′(0) \ DR′′(0). For example just set aj := R′′′ei2π2−nj. Using the
extention of Goursat’s theorem 1.11 we know that all contour integrals of f
over the triangles vanish (ai−1, ai, z1) so we can write

0 =
2n∑
i=1

∫
(ai−1,ai,z1)

f(z)− f(z1)

z − z1

dz =
2n∑
i=1

∫
(ai−1,ai)

f(z)− f(z1)

z − z1

dz
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where the second equality holds because the radial segments of the integral
cancel out. Thus we have

2n∑
i=1

∫
(ai−1,ai)

f(z)

z − z1

dz =
2n∑
i=1

∫
(ai−1,ai)

f(z1)

z − z1

dz

= f(z1)

(
2n∑
i=1

ln
|ai − z1|
|ai−1 − z1|

+ i(φi − φi−1)

)
= f(z1)2πi

where φi is the argument of ai− z1. This follows from computations in (1.6)
and (1.7). On the other have the above expression also equals to

2n∑
i=1

∫
(ai−1,ai)

f(z)

z

∞∑
m=0

(z1

z

)m
dz =

∞∑
m=0

zm1

2n∑
i=1

∫
(ai−1,ai)

f(z)

zm+1
dz (1.8)

This converges uniformly when |z1| < R′ and |z| > R′′. Notice that f(z) for
z ∈ DR′′′(0) is uniformly bounded and |z−m| < (R′′′)−m so for each integral
we have the bound∣∣∣∣∫

(ai−1,ai)

f(z)

zm+1
dz

∣∣∣∣ ≤ ‖f1DR′′′ (0)‖sup(R′′′)−m−1|ai − ai−1|.

Finally since via geometrical considerations we have that
∑2n

i=1 |ai − ai−1| ≤
2πR′′′ by we have that each coefficient satisfies the bound∣∣∣∣∣

2n∑
i=1

∫
(ai−1,ai)

f(z)

zm
dz

∣∣∣∣∣ < 2π(R′′′)−m‖f1DR′′′ (0)‖sup.

This implies that the series (1.8) has a convergence radius given at least by
R′′′.
Finally we remark a nice formula for the contour integral of 1

z
over the unit

circle S1 = {z ∈ C : |z| = 1}. Notice that the function 1
z

does not fall into
the class of functions we have defined complex countour integrals for. As a
matter of fact 1

z
is defined on the punctured disk DR(0) \ {0} for any R > 0

and is complex differentiable in any point where it is defined. However 1
z

is not even continuous in z = 0 and as such none of the above theorems
apply to it in the standard form. In particular we have seen that the integral
over a triangle (a, b, c) containing 0 of 1

z
is non-zero and equal to 2πi if it is

counterclockwise (positive) oriented.
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However we can define the path integral over a sufficiently smooth path
γ : [a, b] 7→ C by setting∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

Here we intend that that the parametrization of the circle is counterclockwise
and is given by γ : t ∈ [0, 2π) 7→ eit ∈ S1 so that∫

S1

1

z
dz =

∫ 2π

0

1

γ(t)
γ′(t)dt =

∫ 2π

0

1

eit
ieitdt = 2πi.

This discussion justifies spending some time on definig path integrals for
complex functions and highlighting the important aspects of path integrals
of complex differentiable functions specifically.

Definition 1.16 (Non self-intersecting curve C in C). A non self-intersecting
curve C in C is the graph of an injective continuous path γ : [a, b] 7→ C.

Note that if C is a curve that is a graph of γ : [a, b] 7→ C ⊂ C then γ is
bijective γ−1 : C 7→ [a, b] is also continuous.
We can see this by reasoning by contradiction. Clearly the inverse γ−1 : C 7→
[a, b] is defined pointwise because of the injectivity of γ. Suppose that the
inverse γ−1 is not continuous. That means that there exist two sequences of
(tn) ,

(
t̃n
)

such that

lim inf
n→∞

|tn − t̃n| = ε > 0 lim
n→∞

|γ(tn)− γ(t̃n)| = 0.

Since the interval [a, b] is compact we can restrict ourselves to a subsequence
such that

lim
n→∞

tn = t ∈ [a, b] lim
n→∞

t̃n = t̃ ∈ [a, b] lim inf
n→∞

|tn − t̃n| > ε.

Thus |t − t̃| > ε but by the continuity of γ we have that limn→∞ γ(tn) =
limn→∞ γ(t̃n) = γ(t) = γ(t̃). This contradicts injectivity since t 6= t̃.
Suppose now that two paths γ1 : [a1, b1] 7→ C and γ1 : [a2, b2] 7→ C have the
same image C and suppose that C is continuous and non self-intersecting.
Then γ−1γ2 : [a2, b2] 7→ [a1, b1] is a continous bijection with continuous in-
verse. The domain of this function and its image are real intervals, thus the
function must be monotone and the image of {a2, b2} must be {a1, b1}. We
can thus define the direction of parameterization by asking that γ1 and γ2

paramtetrize C in the same direction if γ1(a1) = γ2(a2) and γ1(b1) = γ2(b2).
We can identify a directed non self-intersecting graph C ⊂ C by the family of
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all paths that parametrize C in the same direction. This procedure induces
a well defined order on C by imposing

γ(t1) < γ(t2) ⇐⇒ t1 < t2.

Furthermore an odering, together with the fact that C is in (ordered) bijec-
tion with a closed real interval shows that sup, inf exists of any subset of C
and lim sup lim inf of a sequence zn ∈ C is also well defined. Actually to be
able to define these notions we do not need C the parametrization.
With such a notion of ordering we can define a non-intersecting curve C to
be rectifiable if

sup
n,z0<···<zn
z0,...zn∈C

n∑
i=1

|zi − zi−1| <∞.

Its arc-length parametrization is then given by introducting the function

β : C 7→ [0, L] β(z) = sup
n,z0<···<zn<Z
z0,...zn∈C

n∑
i=1

|zi − zi−1|.

We leave the following as an exercise

Exercise 1.17 (Arc Length Parametrization). β−1 is a parametrization of C
by a segment [0, L] and β−1 is 1-Lipschitz i.e. |β−1(t2)− β−2(t2)| ≤ |t2− t1|.
We call L the length of the curve

For rectifiable curves the concept of path integrals is natural

Definition 1.18 (Path integral).∫
C

f(z)dz := lim
ε→0

∑
a=z0<···<zn=b
|zi−zi−1|<ε

f(zi)(zi − zi−1)

End of lecture 4. April 21, 2016

Some additional comments regarding the path integral are in order. We also
allow curves with self-intersections. Let Ω ⊂ C be open and γ : [a, b] → Ω
Lipschitz, i.e. there exists L <∞ such that for all t1, t2 ∈ [a, b] we have

|γ(t2)− γ(t1)| ≤ L|t2 − t1|.
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We want to allow curves with self-intersections; thus we are not asking γ to
be injective.
Our Lipschitz assumption has several consequences. The function Re γ is of
bounded variation:

sup
a<t0<···<tN<b

|Re γ(tn)− Re γ(tn−1)| < L|b− a|

and similarly for Im γ. Both Re γ and Im γ are also absolutely continuous,
i.e. for all ε > 0 there exists δ > 0 such that

N∑
n=1

|γ(t2n)− γ(t2n−1)| < ε if
N∑
n=1

|t2n − t2n−1| < δ.

This implies differentiability almost everywhere with a derivative bounded
in L∞. We also have∫ x

a

(Re γ(t))′dt = Re γ(x)− Re γ(a).

The same holds for Im γ.

Definition 1.19. For f : Ω→ C continuous and γ : [a, b]→ Ω Lipschitz we
define ∫

γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt

Theorem 1.20. Let Ω ⊂ C be open, f : Ω→ C continuous and γ : [a, b]→ Ω
Lipschitz. Then for all ε > 0 there exists δ > 0 such that for all partitions
a = t0 < · · · < tN = b with |tn − tn−1| < δ we have∣∣∣∣∣

∫
γ

f(z)dz −
N∑
n=1

f(γ(tn))(γ(tn)− γ(tn−1)

∣∣∣∣∣ < ε.

Proof. We write∫
γ

f(z)dz =
N∑
k=1

∫ tn

tn−1

f(γ(t))γ′(t)dt

=
N∑
n=1

(∫ tn

tn−1

f(γ(tn))γ′(t)dt+

∫ tn

tn−1

(f(γ(t))− f(γ(tn)))γ′(t)dt
)

The first term equals

N∑
n=1

f(γ(tn))(γ(tn)− γ(tn−1))
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by the fundamental theorem of calculus for absolutely continuous functions.
We can estimate the second term by exploiting uniform continuity of f ◦γ on
[a, b]. Namely, choose δ > 0 small enough so that |f(γ(t))−f(γ(t′))| < ε

L(b−a)

whenever |t − t′| < δ. Here L is the Lipschitz constant of γ. Then we can
estimate the error term as follows:∣∣∣∣∣

N∑
n=1

∫ tn

tn−1

(f(γ(t))− f(γ(tn)))γ′(t)dt

∣∣∣∣∣ <
N∑
n=1

(tn − tn−1)
ε

b− a
= ε.

The path integral is invariant under reparametrization. Assume that s :
[a, b]→ [ã, b̃] is monotonously increasing, bijective and the new path

γ̃ : [ã, b̃]→ C, γ(t) = γ̃(s(t)) for all t ∈ [a, b]

is Lipschitz. Then
∫
γ
f(z)dz =

∫
γ̃
f(z)dz. This can be shown by an appeal

to the Riemann-Stieltjes sums from above (exercise).

Definition 1.21. Let Ω ⊂ C be open. A function f : Ω→ C is holomorphic
in a point z0 ∈ C if it is complex dfferentiable in a disc DR(z0) ⊂ Ω.

The path integral leads to a simple way to exhibit (local) primitives of holo-
morphic functions. Let Ω = DR(z0) and f holomorphic, then there exists F
with F ′ = f and ∫

γ

f(z)dz = F (γ(b))− F (γ(a))

because F ◦ γ is Lipschitz.

(F ◦ γ)′(t) = F ′(γ(t))γ′(t).

The existence of a primitive depends on the topology of the domain (in fact
it needs to be simply connected). For example, let Ω = C\{0}. The function
f(z) = 1/z is holomorphic on Ω, but has no primitive on Ω.
We can exploit this property of holomorphic functions to define path integrals
along curves γ : [a, b]→ Ω which are merely required to be continuous.

Definition 1.22. Let f : Ω → C be holomorphic and γ : [a, b] → Ω contin-
uous. We define the path integral

∫
γ
f(z)dz as follows.

For all t ∈ [a, b] we find δt and δ̃t such that Dδt(γ(t)) ⊂ Ω and for all t̃ with

|t̃ − t| < δ̃t we have that γ(t̃) ∈ Dδt(γ(t)). Since [a, b] is compact we can
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select finitely many tn such that the intervals
(
tn − δ̃tn

3
, tn + δ̃tn

3

)
cover [a, b].

Let δ = minn
δtn
3

. For all t ∈ [a, b] there is an n such that for all |t̃ − t| < δ
we have γ(t̃) ∈ Dδtn (γ(tn)). Find a partition a = s0 < · · · < sN = b with
maxn |sn− sn−1| < δ. Let Fn be a primitive of f on Dδtn (γ(tn)). Now we can
define ∫

γ

f(z)dz :=
N∑
n=1

Fn(γ(sn))− Fn(γ(sn−1)).

It remains to show that this definition is independent of the involved choices
(exercise).
We turn our attention now to several very typical properties of holomorphic
functions.

Theorem 1.23 (Mean value property). Let f holomorphic on DR(z0). Then
for r < R we have

1

2π

∫ 2π

0

f(z0 + reit)dt = f(z0).

Proof. Define

g(z) =
f(z)− f(z0)

z − z0

with the understanding that g(z0) = f ′(z0). Then g is also holomorphic on
DR(z0). Let γ : [0, 2π] → DR(z0), γ(t) = z0 + reit. Then,

∫
γ
g(z)dz = 0.

That is,∫
γ

f(z)

z − z0

dz =

∫
γ

f(z0)

z − z0

dz = f(z0)

∫ 2π

0

1

reit
ireitdt = 2πif(z0).

On the other hand,∫
γ

f(z)

z − z0

dz =

∫ 2π

0

f(z0 + reit)

reit
ireitdt = i

∫ 2π

0

f(z0 + reit)dt.

The claim follows.

Theorem 1.24 (Maximum principle). Let Ω ⊂ C be open and connected, f
holomorphic on Ω. If |f | assumes its maximum value at z0 ∈ Ω, then f is
constant.

In other words, non-constant holomorphic functions assume their maxima on
the boundary of the domain of definition.
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Proof. Let f 6≡ 0. Define g(z) = f(z) |f(z0)|
f(z0)

. Then g(z0) = |f(z0)| and for all
z ∈ Ω,

Re g(z) ≤ g(z0)

Consider h(z) = g(z)− g(z0). Then Reh(z) ≤ 0. Choose r with Dr(z0) ⊂ Ω.
By the mean value property,

0 = h(z0) =
1

2π

∫ 2π

0

Reh(z0 + reit)dt.

Since Reh is continuous and non-positive, we must have Reh(z0 + reit) =
0 for all t. Also, Reh(z0 + r̃eit) = 0 for all t, r̃ < r. By the Cauchy-
Riemann equations we obtain ∂

∂x
Imh = 0 and ∂

∂y
Imh = 0. Therefore h, and

consequently also f , is constant in a neighborhood of z0. Thus we proved
that the non-empty set {z ∈ Ω : f(z) = f(z0)} is open. By continuity of f ,
it is also closed so it must equal Ω because Ω is connected.

Definition 1.25 (Entire functions). A holomorphic function f : C → C is
called entire.

Theorem 1.26 (Liouville). Let f be an entire function. If f is bounded,
then it is constant.

Proof. Consider g(z) = f(z)−f(z0)
z−z0 , g(z0) = f ′(z0) for an arbitrary z0 ∈ C.

Then g is again entire and for all ε > 0 such that for all |z − z0| > 1/ε we
have

|g(z)| ≤ Cε.

By the maximum principle, |g(z)| ≤ Cε for all z ∈ D1/ε(z0). Since ε was
arbitrary, g ≡ 0.

Theorem 1.27. Let f be entire and bijective with holomorphic inverse. Then
there exist a, b ∈ C such that

f(z) = az + b.

Proof. Let z0 be such that f ′(z0) 6= 0 (exists because f cannot be constant).
Without loss of generality suppose that z0 = 0 (by translating the function).
Also assume that f(0) = 0 (by subtracting f(0) from f). Then the function
h(z) = f(z)/z, h(0) = f ′(0) is entire and vanishes nowhere (since f(z) 6= 0
for z 6= 0 by injectivity). Thus also

g(z) =
1

h(z)
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is an entire function. We claim that it is also bounded. By continuity of
f−1, there is ε > 0 such that for all |ξ| < ε, |f−1(ξ)| ≤ 1. Thus, for |z| > 1,
|f(z)| ≥ ε, so |g(z)| ≤ 1

ε
. For |z| ≤ 1 we have boundedness by continuity. By

Liouville’s theorem, g is a constant and the claim follows.

Theorem 1.28. Let f : Ω → C be holomorphic and non-constant. Assume
f(z0) = 0 for a given z0 ∈ Ω. Then there exists δ > 0 with f(z) 6= 0 for all
z ∈ Dδ(z0)\{z0}.

This theorem shows that zeros of holomorphic functions are isolated.

Proof. Without loss of generality we assume z0 = 0 (by translating the func-
tion). Write

f(z) =
∞∑
n=N

anz
n = zN

∞∑
n=N

anz
n−N

with aN 6= 0, N ≥ 1. By continuity, there exists δ > 0 such that
∑∞

n=N anz
n−N 6=

0 for all z ∈ Dδ(0).

Theorem 1.29. Let f : Ω → C be holomorphic and non-constant. Then f
is open (i.e. f(Ω) ⊂ C is an open set).

Proof. Let w0 ∈ f(Ω). Then there is z0 ∈ Ω such that f(z0) = w0. We
argue by contradiction and suppose that w0 is not in the interior of f(Ω).
Thus, for every ε > 0 there exists ξ ∈ Dε(w0) such that ξ 6∈ f(Ω). By the
previous theorem we pick δ such that f(z)−w0 6= 0 for z ∈ Dδ(z0)\{z0}. Let
0 < r < δ. The set K = {z0+reit : t ∈ [0, 2π]} is compact. Thus there exists
ε0 > 0 such that |f(z)−w0| > ε0 for all z ∈ K. Now take ξ ∈ Dε0/2(w0) such
that ξ 6∈ f(Ω). Then the function

g(z) =
1

f(z)− ξ

is holomorphic in Ω. For z ∈ K we have

|g(z)| ≤ 1

|f(z)− w0| − |w0 − ξ|
<

1

ε0 − ε0/2
=

2

ε0

.

But,

|g(z0)| = 1

|w0 − ξ|
>

2

ε
.

This contradicts the maximum principle applied to g.

End of lecture 5. April 25, 2016
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We have already seen in the previous lecture that holomorphic functions
satisfy the maximum principle. Furthermore Liouville’s principle states that
an entire function that is bounded is actually constant. Notice that for this
statement it is crucial that f be defined and be bounded on the whole C
and not simply on an open set Ω. Finally a similar theorem in spirit we
have obtained the characterization of bijections of C: Let f : C → C be a
holomorphic function that is bijective. Then f is actually an affine function
i.e. ∃a, b ∈ C such that

f(z) = az + b.

Once again such a structure theorem requires the domain of definition of f
to be the whole complex plane C.
We will continue to elaborate on some important structure properties of
holomorphic functions however this time we will concentrate on more “local”
properties i.e. results similar in spirit that however hold locally and do not
require the domain of definition of f to be the whole complex plane. We
have already shown the crucial fact that holomorphic functions are open
mappings.
We thus pass to characterizing local invertibility properties of holomorphic
functions.

Proposition 1.30. Let Ω ⊂ C an open domain and f : Ω → C be a holo-
morphic function. For any fixed point z0 ∈ Ω the following are equivalent:

1. f ′(z0) 6= 0;

2. there exists δ > 0 such that f �Dδ(z0) is injective;

3. there exists δ > 0 such that f �Dδ(z0) is bijective map with its image

Ω̃ ⊂ C that is an open set and its inverse g : Ω̃ → Dδ(z0) is also
holomorphic.

Proof.
(3)⇒ (2) is straightforward.
(2)⇒ (1) To show this let us suppose, without loss of generality, that z0 =
0 ∈ Ω and f(0) = 0 (by translation and adding a constant). By assumption
f is injective on Dδ(0) and let K = f

(
∂Dδ/2(0)

)
. By injectivity 0 /∈ K.

Furthermore K is compact since it is the image of a compact set ∂Dδ/2(0) via
a continuous function, and thus there exists an ε > 0 such that D2ε(0)∩K =
∅.
Thus for all z′ ∈ Dδ(0), for all y ∈ Dε(0), and for all z ∈ ∂Dδ/2(0)∣∣∣∣ z′ − z

f(z)− y

∣∣∣∣ ≤ c
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for some c <∞. This holds simply because

|z′| < δ |z| = δ

2
|f(z)− y| ≥ ε.

Let us argue by contradiction and assume that f ′(0) = 0. Notice that it is
possible to choose z′ arbitrarily close to 0 so that the following properties
hold:

• f(z′) ∈ Dε(0) (using continuity of f);

• f ′(z′) 6= 0 since f ′ is holomorphic on Dδ(0) so its zeroes are discreet.

The function z 7→ f(z)− f(z′) has a zero in z′ and is holomorphic in Dδ(0)
so it factorizes as

f(z)− f(z′) = (z − z′)g(z)

where g(z) is holomorphic on the disk Dδ(0). Furthermore using the injec-
tivity of f we have that g(z) doesn’t have any zeroes in Dδ(0) otherwise
f(z) = f(z′) would have at least two solutions. So the inverse

z′ − z
f(z)− f(z′)

is also holomorphic in Dδ(0). Since the above function is holomorphic and
bounded for z ∈ ∂Dδ/2(0) it is also bounded on the whole Dδ(0) by the
constant c independently of the choice of z′.
But if f ′(0) = 0 then expanding f in a power series on Dδ(0) we obtain

f(z) =
∞∑
n=2

anz
n = z2

∞∑
n=2

anz
n−2.︸ ︷︷ ︸

holomorphic in Dδ(0)

bounded on Dδ/2(0)

so |f(z)| < Cz2. Furthermore |f(z′)| < Cz′2 so setting z = −z′∣∣∣∣ z′ − z
f(z)− f(z′)

∣∣∣∣ > 2|z′|
C|z′|2

.

Since long as z′ can be chosen arbitrarily small this leads to a contradiction.
(1)⇒ (3). There are several standard methods of proof of this implication.
The possible approaches are as follows.

• Write down a formal power series for the inverse and show that the
convergence radius is non-vanishing. Deduce from this that the inverse
can be extended to an open set and then that f must have an open
image: Ω̃ = f(Ω) = (f−1)

−1
(Ω).
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• Use the implicit function theorem and explicitly compute the differen-
tial of the inverse map. Show that it is holomorphic and thus f−1 is
holomorphic too.

• Uses the contour integral characterization of holomorphic functions.

We elaborate on the latter. First we show the local injectivity. Without
loss of generality suppose z0 = 0 and f(z0) = 0 and let f(z) =

∑∞
n=1 anz

n

with a1 6= 0 by assumption on the non-vanishing derivative. Suppose that
f(z1) = f(z2) for some z1 6= z2 close to 0: z1, z2 ∈ Dδ(0) for some δ > 0 small
enough. This means that

a1(z1 − z2) =
∞∑
n=2

|an|(zn2 − zn1 ) = (z1 − z2)g(z1, z2).

The function in two variables g satisfies

|g(z1, z2)| <
∞∑
n=2

|an|nδn−1

where δ = |z1 − z2| so

|a1| ≤
∞∑
n=2

|an|nδn−1.

By continuity in δ this shows that δ cannot be to small and this means that
injectivity cannot fail locally as required.
We now pass to proving that we are dealing with a bijections with an open
set Ω̃. Let g : Ω̃ → Dδ(0) the point-wise inverse on Ω̃ = f(Dδ(0)). The fact
that g is continuous follows from the fact that f is an open mapping. Thus
the expression ∫

γ

g(z)dz = 0

makes sense for Lipschitz curves γ. We thus want to show that for a closed
curve γ : [0, 1]→ Ω̃ ∫

γ

g(z)dz = 0

In particular there exists γ̃ : [0, 1]→ Dδ(0) given by γ̃ = g ◦γ so that so that

γ = f ◦ γ̃.

Obtaining the equality ∫
γ

g(z)dz =

∫
γ̃

zf ′(z)dz
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would allow us to conclude since γ̃ is also closed and since zf ′(z) is holomor-
phic on a disk the right hand side vanishes. At a formal level, expanding the
definition of a path integral yields∫ 1

0

g(γ(t))γ′(t)dt =

∫ 1

0

g(f(γ̃(t)))f ′(γ̃(t))γ̃′(t)dt =

∫
γ̃

zf ′(z)dz = 0.

The completion of the proof is left as an exercise. As a matter of fact one
needs to show that γ̃ is Lipschitz. More generally we require γ̃ to be in some
class of paths along which we can integrate continuous functions and apply
the chain rule in the first equality when expanding γ′(t) = (f ◦ γ̃)′(t).
A possible approach to giving a rigorous proof depends on showing that γ̃
is a Lipschitz curve since on every point of the support of γ the differential
g′ is well defined and bounded. This follows from the fact that on Dδ(0) f ′

is uniformly separated from zero. Notice that this does not require showing
continuity of the derivative of the inverse of f but only that it is bounded
and that simplifies the procedure from the first two approaches. Formally we
require that |g′| ∈ L∞.

After this result on local inverses of holomorphic functions let us pass to
questions of biholomorphisms (that is, bijective holomorphic maps) of the
disk onto itself.
From now on we will denote the open unit disk in C as D = D1(0) ⊂ C. Let
us now study bijection of the unit disk D in itself. Up to multiplication by a
scalar this classifies all the biholomorphisms between two disks. Notice that

f(z) = λ
ω − z
1− ω̄z

f : D→ D

is a bijection and it is holomorphic as long as |λ| = 1 and |ω| < 1. This
follows from noticing that the above is a composition of two map

• complex rotation of angle arg λ: z 7→ λz, |λ| = 1;

• z 7→ ω−z
1−ω̄z , |ω| < 1 that is well defined and holomorphic on D since

1− ω̄z 6= 0 for |z| < 1.

Let us consider more in detail

g(z) =
ω − z
1− ω̄z
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that is holomorphic on D and continuous on D. Notice that when |z| = 1 the
function is given by

g(z) =
ω − z
1− ω̄z

=
ω − z
zz̄ − ω̄z

= −1

z

ω − z
ω̄ − z̄

and clearly |g(z)| = 1 so by the maximal principle |g(z)| < 1 for all z ∈ D.
Furthermore a strait-forward computation gives the identity

g ◦ g = Id.

Theorem 1.31 (Bijections of the unit disk). Let f : D→ D be a holomorphic
bijective function. Then there exists a |λ| = 1 and |ω| < 1 so that

f(z) = λ
ω − z
1− ω̄z

. (1.9)

First of all notice that if f is of the form (1.9) then f(ω) = 0. In particular if
f : D→ D is a bijection then there exists a unique ω ∈ D such that f(ω) = 0
and also f ′(ω) 6= 0 by the characterization of local holomorphic bijections.
Now as previously let

g(z) =
ω − z
1− ω̄z

for the ω found above, This function also satisfies g(ω) = 0 and g′(ω) 6= 0.

Thus we can conclude that both f(z)
g(z)

and g(z)
f(z)

are holomorphic functions (this
follows from explicitly writing down the quotient of the two power series
representation of the functions). We would like to state that both∣∣∣∣f(z)

g(z)

∣∣∣∣ ≤ 1

∣∣∣∣ g(z)

f(z)

∣∣∣∣ ≤ 1

to conclude using that ∣∣∣∣ g(z)

f(z)

∣∣∣∣ = 1

and since the quotient is holomorphic f(z)
g(z)

= λ with λ a constant such that

|λ| = 1.
We will obtain the two bounds above using a careful application of the max-
imum principle. We need to show that the above inequalities hold on the
boundary ∂D. Clearly f(z) < 1 on D and |g(z)| = 1 on D so by continuity∣∣∣∣f(z)

g(z)

∣∣∣∣ ≤ 1 on ∂D.
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Now we need to prove the converse i.e. that in a sufficiently small neigh-

borhood of the boundary |f | is close to 1. But notice that f−1
(
D1−ε(0)

)
is

compact in D since f−1 is well defined and continuous on D. Thus

f−1
(
D1−ε(0)

)
⊂ D1−δ(0)

so |z| > 1− δ implies that 1− ε < |f(z)| < 1. This concludes the reasoning
Finally as a corollary of what we have seen so far we can characterize the
bijection of the punctured complex plane.

Theorem 1.32. Let f : C \ {0} → C \ {0} be a holomorphic bijection. Then
there exists an a ∈ C \ {0} such that

f(z) = az or f(z) =
a

z
.

Proof. Let y = f(1) then 1
f(z)−y is continuous and holomorphic as long as

|f(z)− y| > ε i.e. when |z − 1| > δ.
We see the above as a function of z and we use the fact that a bounded
function on a punctured disk Dδ(0) \ {0} has a holomorphic extention to the
whole Dδ(0). This is due to Cauchy’s integral formula. Clearly if γ si a path
along the boundary ∂Dδ(0) counterclockwise

z0 7→
1

2πi

∫
γ

f(z)

z − z0

dz

defines a holomorphic function that coincides with f on Dδ(0) everywhere
and is continuous across 0.
Let us distinguish two cases
Case 1: this is essentially the case when f(z) → ∞ when z → 0. Suppose
that 1

f(z)−y vanishes in 0.

Case 2: 1
f(z)−y does not vanish in 0.

The conclusion of the proof is left as an exercise.

Conclusion: Holomorphic bijections are very few.

End of lecture 6. April 28, 2016

Definition 1.33. Two curves γ0, γ1 : [a, b]→ Ω with γ0(a) = γ1(a), γ0(b) =
γ1(b) are called homotopic in Ω if there exists a continuous map γ : [a, b] ×
[0, 1] → Ω such that for all t ∈ [a, b], γ(t, 0) = γ0(t), γ(t, 1) = γ1(t) and for
all s ∈ [0, 1], γ(a, s) = γ0(a) and γ(b, s) = γ0(b). Such a map γ is called a
homotopy.
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1

s

a b
a

b

Theorem 1.34. Let f be holomorphic on Ω and γ0, γ1 homotopic in Ω.
Then, ∫

γ0

f(z)dz =

∫
γ1

f(z)dz.

Example 1.35. Consider Ω = C \ {0} and f(z) = 1/z.

γ0

γ1

Proof of Theorem 1.34. Choose a homotopy γ and denote γs = γ(·, s). It
suffices to show that for all s ∈ [0, 1] there exists δ with∫

γs̃

f(z)dz =

∫
γs

f(z)dz

for all |s̃− s| < δ. This is enough because we can define

s0 = inf
{
s :

∫
γs

f(z)dz 6=
∫
γ0

f(z)dz
}

and apply the above to s0. The image of γs0 is compact. Therefore we find
ε > 0 with D10ε(γs0(t)) ⊂ Ω for all t ∈ [a, b]. Since γ is uniformly continuous,
there exists δ such that for |s− s0| < δ, |t1 − t2| < δ we have

|γ(t1, s)− γ(t2, s0)| < ε

2
.

Choose a partition a = t0 < t1 < · · · < tN = b with |tn − tn−1| < δ.
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Let Dn = Dε(tn) and Fn primitive of f on Dn. Observe that

Fn+1(γs(tn+1))− Fn+1(γs0(tn+1)) = Fn(γs(tn+1))− Fn(γs0(tn+1)) (1.10)

because Fn+1 = Fn + c on Dn+1 ∩Dn.

∫
γs

f(z)dz −
∫
γs0

f(z)dz =
N−1∑
n=0

Fn(γs(tn+1))− Fn(γs(tn))

−
(N−1∑
n=0

Fn(γs0(tn+1))− Fn(γs0(tn))
)

=
(N−1∑
n=0

Fn(γs(tn+1))− Fn(γs0(tn+1))− Fn+1(γs(tn+1)) + Fn+1(γs0(tn+1))
)

+ FN(γs(tN))− FN(γs0(tN))− F0(γs(t0)) + F0(γs0(t0)) = 0,

where the last equality is a consequence of (1.10) and γs(b) = γs0(b), γs(a) =
γs0(a).

Definition 1.36. An open and closed set Ω ⊂ C is called simply connected
if every pair of continuous curves γ0, γ1 : [a, b] → Ω with γ0(a) = γ1(a),
γ0(b) = γ1(b) is homotopic in Ω.

Examples 1.37. • If Ω is convex, then it is simply connected. To see
this we put γ(t, s) = (1 − s)γ0(t) + sγ1(t) ∈ Ω for γ0, γ1 as above and
s ∈ [0, 1], t ∈ [a, b].

• C is simply connected.

• C \ (−∞, 0] is simply connected. The function z 7→ z2 maps the right
half plane to C \ (−∞, 0].

Theorem 1.38. Every holomorphic function f on a simply connected set Ω
has a primitive in Ω.
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Proof. Let z0 ∈ Ω. For every z ∈ Ω there exists a path γ : [a, b] → Ω with
γ(a) = z0, γ(b) = z (because Ω is connected). Note that if γ0, γ1 are two such
paths, then they must be homotopic in Ω. Thus we can define

F (z) =

∫
γ

f(z)dz =

∫
γ0

f(z)dz =

∫
γ1

f(z)dz.

It remains to demonstrate that F ′(z) = f(z) for all z ∈ Ω. Let Dε(z) ⊂ Ω,
h ∈ Dε(z). Let Fε be a primitive of f on Dε(z). Then

F (z1)− F (z) =

∫
(z,z1)

f(z)dz = Fε(z1)− Fε(z) in Dε(z)

and therefore F = Fε + C on Dε(z), so F ′ = F ′ε = f .

Definition 1.39. Let Ω be non-empty and simply connected and Ω̃ open
and connected. A holomorphic map f : Ω→ Ω̃ is called universal cover if

1. f ′(z) 6= 0 for all z ∈ Ω, and

2. for every continuous γ̃ : [a, b]→ Ω̃ and z0 ∈ Ω with f(z0) = γ̃(a) there
is a lift γ : [a, b]→ Ω with γ(a) = z0 and γ̃(t) = f(γ(t)).

Lemma 1.40. The lifted path γ from the previous definition is uniquely
determined.

Proof. Let γ0 6= γ1 be two such curves. Consider

t0 = inf{t : γ0(t) 6= γ1(t)}.

By continuity of γ0, γ1,

γ0(t0) = lim
t→t0−

γ0(t) = γ1(t0) =: z1

f is a local bijection, in particular on Dε(z1) (exercise).

Lemma 1.41 (Homotopy lifting property). For every homotopy γ̃ : [a, b] ×
[0, 1] → Ω̃ and lift γ0 : [a, b] → Ω of γ̃(·, 0) there exists a unique homotopy
γ : [a, b]× [0, 1]→ Ω with f ◦ γ = γ̃ and γ(·, 0) = γ0.

The proof is left as an exercise (use local bijectivity).
Exercise: f is surjective. It is not necessarily injective.

Theorem 1.42. The map f : C→ C \ {0}, f(z) = ez is a universal cover.
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Remark 1.43. Then also f : C → C \ {0}, f(z) = eaz+b is universal cover
(because az + b is a biholomorphism C → C). We will see that these are
all the universal covers C → C \ {0}. Roughly speaking, the exponential
function is the unique universal cover C → C \ {0} up to biholomorphisms
C→ C.

Proof. 1. f ′(z) = ez 6= 0 because eze−z = 1 for all z ∈ C.
2. Let γ̃ : [a, b]→ C \ {0}, f(z0) = γ̃(a).
Case 1: Im (γ̃) ⊂ C \ (−∞, 0]. Let F be a primitive of 1

z
on C \ (−∞, 0]

(exists by Thereom 1.38). Then,(
eF (z)

z

)′
=
eF (z) 1

z

z
− eF (z)

z2
= 0

and therefore eF (z)

z
is a constant. Define γ(t) = F (γ̃(t))− F (γ̃(a)) + z0.

Case 2: C \ [0,∞) (image of C \ (−∞, 0] under z 7→ −z). Use the same
argument as above.
General case: The image is in both these sets. Then we argue by contradic-
tion. Let

t0 = inf{t : γ̃
∣∣
[a,t] has no preimage γ with γ(a) = z0}.

Then γ̃(t0) ∈ C \ (−∞, 0] or γ̃(t0) ∈ C \ [0,∞). Use Case 1 or 2 to generate
a preimage of γ̃

∣∣
[t0−δ,t0+δ] . Contradiction.

End of lecture 7. May 2, 2016

Example 1.44. The map z 7→ z3 mapping the right half-plane {z : Re z > 0}
to C \ {0}. We have f ′ = 3z2 and f is surjective.

Example 1.45. The complex exponential function z 7→ ez maps a horizontal
strip {z ∈ C : a < Im (z) < b} to a cone with aperture determined by a and
b:

Im z = a

Im z = b

ez
eia

eib
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Theorem 1.46. Let f : Ω1 → Ω0 be a universal cover, Ω2 non-empty and
simply connected and g : Ω2 → Ω0 holomorphic. Then there exists a holo-
morphic map h : Ω2 → Ω1 with g = f ◦ h.

Ω1 Ω2

Ω0

z1

z2

z0

Proof. Choose z2 ∈ Ω2 with z0 = g(z2) and z1 with f(z1) = z0 (possible
because f is surjective). For z ∈ Ω2 choose a path γ2 : [a, b] → Ω2 with
γ2(a) = z2 and γ2(b) = z. Define γ0 = g ◦ γ2. By the lifting property
there exists a unique γ1 : [a, b] → Ω1 with γ1(a) = z1 and f ◦ γ1 = γ0.
Define h(z) = γ1(b). This is independent of the choice of γ2 (given z1, z0, z2):
every other γ̃2 is homotopic to γ2 since Ω2 is simply connected. Then γ̃0 is
homotopic to γ0, γ̃1 is homotopic to γ1. In particular, γ̃1(b) = γ1(b). Also, h
is holomorphic because it is a composition of holomorphic functions.

Remark 1.47. With z2, z1 given, h is uniquely determined. This follows by
inspection of the proof.

Theorem 1.48. Let f1 : Ω1 → Ω0 and f2 : Ω2 → Ω0 be universal covers.
Then there exists a biholomorphism h : Ω1 → Ω2 with f2 ◦ h = f1.

Proof. Applying the previous theorem we obtain g, h with f2 ◦ h = f1 and
f1 ◦ g = f2. Then f1 ◦ (g ◦ h) = f1. Using the uniqueness in the previous
theorem applied to f1 and f1 gives g ◦ h = id.

Corollary 1.49. Let f : C→ C \ {0} be a universal cover. Then there exist
a, b ∈ C such that f(z) = eaz+b.

Proof. Apply the previous theorem to the universal cover f(z) = ez and
recall that all the biholomorphic maps C→ C are affine linear functions.
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Corollary 1.50 (Existence of logarithms). Let Ω be simply connected and
g : Ω→ C\{0} holomorphic. Then there exists a holomorphic map h : Ω→ C
with g(z) = eh(z). Moreover, h is uniquely determined up to an additive
constant of the form 2πin with n ∈ Z.

Corollary 1.51 (Existence of nth root). If Ω is simply connected, n ≥ 2
and f : Ω → C \ {0} holomorphic, then there exists a holomorphic function
g : Ω → C with f(z) = (g(z))n for all z ∈ Ω. Moreover, g is uniquely

determined up to a multiplicative constant of the form e
2πik
n with k ∈ Z.

Proof. There exists h with f(z) = eh(z). Define g(z) = eh(z)/n.

Remark 1.52. More generally, for arbitrary α ∈ C we can also define fα(z)
on a simply connected Ω.

Definition 1.53. Let γ0 : [a, b] → C \ {0} be continuous with γ(a) = γ(b).
Pick a lifting γ1 : [a, b] → C with eγ1(t) = γ0(t) for all t ∈ [a, b]. We define
the winding number of γ0 around 0 by

nγ0,0 =
1

2πi
(γ1(b)− γ1(a)).

Note that this number is well-defined since the non-uniqueness caused by the
additive constant in γ1 is cancelled by taking the difference.

We have
e2πinγ0,0 = eγ1(b)−γ1(a) = e0 = 1

and therefore nγ0,0 ∈ Z.
For γ0 Lipschitz,

1

2πi

∫
γ0

1

z
dz =

1

2πi

∫ b

a

1

γ0(t)
γ′0(t)dt =

1

2πi

∫ b

a

1

eγ1(t)
eγ1(t)γ′1(t)dt

=
1

2πi
(γ1(b)− γ1(a)) = nγ0,0.

Quotients of holomorphic functions

Considering C ∪ {∞} we adopt the conventions that 1
0

=∞ and 1
∞ = 0.

Definition 1.54. Let Ω be open. A function f : Ω → C ∪ {∞} is called
meromorphic in the point z ∈ Ω if there exists δ > 0 such that either f or 1

f

is holomorphic on Dδ(z). f is called meromorphic on Ω if it is meromorphic
in every point z ∈ Ω.
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Remarks 1.55. • If f is holomorphic in z, then f is meromorphic in z.

• f is meromorphic in z if and only if 1
f

is meromorphic in z.

• If f is non-constant and meromorphic in z then there exists δ > 0 such
that f maps Dδ(z) \ {z} to C \ {0} and f �Dδ(z)\{z} is holomorphic.

Proof. Case 1: f(z) ∈ C\{0}. By continuity we can choose δ > 0 such
that both f �Dδ(z)\{z} and 1

f
�Dδ(z)\{z} are holomorphic.

Case 2: f(z) = 0. The claim follows by the theorem on isolated zeros.
Case 3: f(z) =∞. Then z is an isolated zero of 1

f
.

End of lecture 8. May 9, 2016

Proposition 1.56. Let Ω ⊂ C be an open connected domain and let f : Ω→
C ∪ {∞} be a function. Given a point z ∈ Ω the following are equivalent:

1. f is meromorphic in z;

2. there exists δ > 0, N ∈ Z, and g : Dδ(z) → C a holomorphic function
such that

f(z̃) = (z̃ − z)Ng(z̃) for all z̃ ∈ Dδ(z) \ {z},

or otherwise f ≡ ∞ or f ≡ 0;

3. there exists δ > 0 and N ∈ Z, N ≥ 0 and a−1, . . . , a−N and a unique
holomorphic function g : Dδ(z)→ C such that

f(z̃) =
N∑
n=1

a−n(z̃ − z)−n︸ ︷︷ ︸
Principle part

+g(z̃) for all z̃ ∈ Dδ(z) \ {z} (1.11)

, or otherwise f ≡ ∞;

4. there exists δ > 0 such that f �Dδ(z)\{z} is holomorphic and the image
f (Dδ(z)) is not dense in C, or otherwise f ≡ ∞.

Proof. 1) =⇒ 2)
Suppose that we are in the case that the function f is holomorphic in Dδ1(z).

• If f is non-vanishing in z, then there exists δ1 > δ > 0 such f 6= 0 on
Dδ(z). Then function g := f �Dδ(z) is holomorphic and we take N = 0.
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• If f(z) = 0 and f 6≡ 0 then the zeroes of f are discreet and thus there
exists 0 < δ < δ1 such that f �Dδ(z)\{z} is non-vanishing. Furthermore f
admits a series expansion around z of the form f =

∑∞
n=0 bn(z̃−z). Let

N = min {n : bn 6= 0} and set g(z̃) =
∑∞

n=0 bn+N(z̃ − z)n. The results
follows.

Suppose now that we are in the case when 1
f

is holomorphic in Dδ1(z). Sim-
ilarly as before we can write

1

f(z̃)
= (z̃ − z)Ng(z̃)

for z̃ ∈ Dδ(z) for some 0 < δ < δ1 where g(z̃) is a non-vanishing holomorphic
function on Dδ(z). Thus we have that

f(z̃) = (z̃ − z)−N
1

g(z̃)
.

holds on Dδ(z) an.d this concludes the proof of this part of the equivalence
2) =⇒ 3)
Suppose that f(z̃) = (z − z̃)Ng(z̃) in Dδ \ {z} where g(z̃) is a holomorphic
function on Dδ(z). If N ≥ 0 the principle part vanishes and 3) holds trivially.
In the case that N < 0 one has

g(z̃) =
∞∑
n=0

an(z̃ − z)n f(z̃) =
∞∑
n=0

an(z̃ − z)n−N =
+∞∑
n=−N

an+N(z̃ − z)n.

The sum over the terms N ≤ n < 0 yields the principle part while

+∞∑
n=0

an+N(z̃ − z)n

defines a holomorphic function around z with the same radius of convergence
as g.
3) =⇒ 4) In the case that N = 0, there is no principle part so the function
g �Dδ/2 is continuous on a compact set so it is bounded. As such it has a

bounded, not dense, image. The same applies to the case when N > 0.
Suppose that N < 0 and, without loss of generality we can assume aN 6= 0
so that ∣∣∣∣∣

N−1∑
n=1

a−n(z̃ − z)−n

∣∣∣∣∣ ≤ 1

3

∣∣a−N(z̃ − z)−N
∣∣
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for |z̃ − z| small enough. Similarly for |z̃ − z| small enough one also has

|g(z̃)| ≤ 1

3

∣∣a−N(z̃ − z)−N
∣∣

thus

|f(z̃)| ≥
∣∣a−N(z̃ − z)−N

∣∣− |g(z̃)| −

∣∣∣∣∣
N−1∑
n=1

a−n(z̃ − z)−n

∣∣∣∣∣
≥ 1

3

∣∣a−N(z̃ − z)−N
∣∣ ≥ |a−N |

3
δ−N

for z̃ in the disk Dδ(z). Thus the image of this disk cannot be dense.
4) =⇒ 1)
Suppose that the image f(Dδ(z)) is not dense in C. This means there exists
a disk Dε(y) disjoint from the image f(Dδ(z) \ {z}). Consider the function

1

f(z̃)− y
defined on Dδ(z) \ {z}. Thus it admits a holomorphic extention to the whole
disk Dδ(z). Let us now distinguish the cases in which h(z) 6= 0 and h(z) = 0.
In the first case let

h(z̃) =
1

f(z̃)− y
so that

1

h(z̃)
= f(z̃)− y

on Dδ̃(z) for a sufficiently small δ̃ > 0 and thus the identity

f(z̃) =
1

h(z̃)
+ y

holds on Dδ̃(z) and defines a holomorphic function. In the case that h(z) = 0
we have that

1

f(z̃)
=

h(z̃)

1 + yh(z̃)

is holomorphic in Dδ̃(z) for δ̃ small enough and this concludes the proof.

At this point we remark that point 3 can be used to define an expansion for
meromorphic functions around a given point z ∈ C. Given a meromorphic
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function f : Ω → C ∪ {∞} for an open connected domain Ω ⊂ C and for
every point z ∈ Ω one may write

f(z̃) =
+∞∑
n=−N

an(z̃ − z)n. (1.12)

The convergence radius r of the series is determined by the positive index
coefficients. So this means that the series converges absolutely on Dr′(z)\{z}
and f and the partial sums are uniformly bounded on all coronas of the form

{z̃ ∈ C : 0 < ε < |z̃ − z| < r′ < r}

Notice that the holomorphic function g appearing in expression (1.11) corre-
sponds to the part of the series with the non-negative index coefficients:

g(z̃) =
+∞∑
n=0

an(z̃ − z)n

while the negative index coefficients determine the principle part:

−1∑
n=−N

an(z̃ − z)n

Having defined the basic properties of meromorphic functions we will now
state and prove a deep structure result. Given a meromorphic function we
call the points z ∈ C such that f is not holomorphic on any disc Dδ(z) the
“poles” of f . It can be easily seen that the poles of f are the zeroes of 1

f
and

vice versa: the zeroes of f are the poles of 1
f
. Notice that it trivially follows

from the definition that f is meromorphic if and only if 1
f

is meromorphic.

Let γ be a closed2 Lipschitz continuous path

γ : [0, 1]→ C \ {0}

and let f be a holomorphic function on a disk Dr(0) containing the image of
γ. The contour integral condition∫

γ

f(z)dz = 0

does not hold for meromorphic function. As a matter of fact consider

1

2πi

∫
γ

1

z
dz = nγ,0

2such that γ(0) = γ(1).
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where nγ,0 is the winding number of γ with respect to 0 that is generally
non-zero. If f is a meromorphic function we can expand f into its Laurent
series. Clearly the holomorphic part doesn’t give any contribution to the
contour integral. On the other hand the contribution from the principle part
amounts only to the one coming from the coefficient a−1z

−1. As a matter of
fact

1

2πi

∫
γ

N∑
n=1

a−nz
−ndz =

a−1

2πi

∫
γ

1

z
dz = a−1nγ,0.

This holds since

N∑
n=1

a−nz
−n = a−1z

−1 +
N∑
n=2

a−nz
−n

︸ ︷︷ ︸
has a primitive

in C \ {0}.

The primitive of a−nz
−n with n ≥ 2 on C\{0} is clearly given by a−n

−n+1
z−n+1.

We call the residue f in the point z ∈ C the quantity

Reszf := a−1

where a−1 is the −1-term in the Laurent series of f at z ∈ C as in (1.12).
Notice that not all functions are meromorphic. Consider a function f : Ω→
C ∪ {∞} such that f(z) = ∞ only for a discreet set of points and suppose
that f is holomorphic on Ω \ {z ∈ Ω: f(z) = ∞}. Recall that z ∈ Ω with
f(z) = ∞ is a pole if f �Bδ(z) is meromorphic for some δ > 0. If no such
δ > 0 exists then we call z an essential singularity.
The function f(z) = e1/z if holomorphic on C \ {0}, however it is not mero-
morphic on Bδ(0) for any δ > 0. This can be seen explicitly since neither
f nor 1

f(z)
= e−1/z is holomorphic around 0. Furthermore there is no such

N ∈ N such that e1/zzN is holomorphic. The point 0 is thus an essential
singularity of e1/z.

Proposition 1.57 (Cauchy for meromorphic function). Let f : Ω→ C∪{∞}
be a meromorphic function with finitely many poles3. Let γ : [a, b] → Ω be a
continuous path homotopic on Ω to a constant path, such that no poles of f
lie in the image of γ. Then∫

γ

f(z)dz = 2πi
N∑
j=i

Res(f, zj)nγ,zj ,

where z1, . . . , zn are poles of f .

3point z ∈ C such that f(z) =∞.
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There is no loss of generality in assuming that the number of poles of f are
finite. As a matter of fact, since the poles of f are the zeroes of 1/f that is
holomorphic on Ω \ {z ∈ Ω: f(z) = 0} they are discreet set.

Example 1.58. Let us calculate the integral∫ ∞
−∞

1

1 + x2
dx.

R
R−R

i
γ+

For this purpose we consider the closed
path γR made up of two parts: [−R,R]
on the real line and the semicircle γ+

in the half-upper plane, as in the pic-
ture. The integral over γ+

R goes to zero

lim
R→∞

∫
γ+R

1

1 + z2
dz = 0

since ∣∣∣∣∣
∫
γ+R

1

1 + z2
dz

∣∣∣∣∣ =

∣∣∣∣∫ π

0

1

1 +R2e2it
2iRe2itdt

∣∣∣∣ ≤ 2π

R
.

Thus we have that∫ R

−R

1

1 + z2
dz =

∫
γR

1

1 + z2
dz −

∫
γ+R

1

1 + z2
dz

and by taking the limit we obtain∫ +∞

−∞

1

1 + z2
dz = lim

R→+∞

∫
γR

1

1 + z2
dz.

We compute the right hand side using the residue theorem since 1
1+z2

is
meromorphic on C: ∫

γR

1

1 + z2
dz = 2πi

(
1

2i

)
nγ,i︸︷︷︸
=1

= π.

We obtained the residue by noticing that

1

1 + z2
=

1

2i

(
1

z − i
− 1

z + i

)
.

The function 1
z+i

is holomorphic on {z ∈ C : Re z > −1} that contains the

image of γR so it does not contribute to the principle part of 1
1+z2

for any

point inside on that domain. On the other hand 1
2i

(z − i)−1 has residue 1
2i

.

48



Exercise 1.59. Consider the integral

I =

∫ ∞
−∞

eax

1 + ex
x. , a ∈ (0, 1)

R
R−R

iπ

2iπ

3iπ

−iπ

Consider now the closed rectangle as
path γ, as in the picture. The integral
over the upper edge is equal to:

−
∫ ∞
−∞

ea(x+2πi)

1 + ex+2πi
x. = −e2πiaI

moreover, over the sides x is constant,
so

I(1− e2πia) = 2πiResiπ.

End of lecture 09, May 12, 2016

The argument principle

The argument principle is a tool to count zeros and poles of meromorphic
functions using curve integrals. Let Ω ⊂ C be open and bounded and γ a
continuous curve in γ for which the Cauchy integral theorem holds. Tem-
porarily we assume also 0 ∈ Ω and 0 6∈ γ for convenience. As we have
seen, the complex logarithm is not uniquely determined, but its derivative
is : (ln(z))′ = 1

z
. Recall that the winding number of γ around 0 is given by

1

2πi

∫
γ

ln′(z)dz.

We can interpret this integral as counting the zeros of the function f(z) = z
within the contour given by γ. Our goal is to generalize this to arbitrary
meromorphic functions f .
Let f be a meromorphic function on Ω, z0 ∈ Ω and say that f(z) = (z −
z0)Ng(z), N ∈ Z holds holds in a neighborhood of z0, excluding the point z0

with g holomorphic and g(z0) 6= 0. Then,

(ln ◦f)′(z) =
f ′(z)

f(z)
=
N(z − z0)N−1g(z) + (z − z0)Ng′(z)

(z − z0)Ng(z)
=

N

z − z0

+
g′(z)

g(z)
.
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This function has a pole with residue N in the point z0 and is meromorphic
in Ω. We conclude that if f has no poles or zeros on γ, then

1

2πi

∫
γ

f ′

f
=
∑
z

Resz

(
f ′

f

)
= Nγ(f)− Pγ(f),

where Nγ(f) (Pγ(f)) is the number of zeros (poles) of f within the contour
γ, where each zero (pole) is counted as many times as the product of winding
number and multiplicity indicates.

Theorem 1.60 (Rouché). Let f, g be meromorphic functions on Ω without
poles or zeros on γ, and suppose that for all z ∈ γ we have |g(z)| < |f(z)|.
Then,

Nγ(f + g)− Pγ(f + g) = Nγ(f)− Pγ(f).

Proof. Define a family of meromorphic functions by ft(z) = f(z) + tg(z)
with t ∈ [0, 1]. Then f0 = f , f1 = f + g. The assumptions imply that ft
is meromorphic on Ω and has no poles or zeros on γ for every t. By the
argument principle,

Nγ(ft)− Pγ(ft) =
1

2πi

∫
γ

f ′t(z)

ft(z)
dz.

Since integrand is continuous in z and γ is continuous, the integrand is uni-
formly bounded in t. By the uniform convergence theorem, the right hand
side is therefore a continuous function in t. On the other hand that function
takes only values in Z. Therefore it must be constant.

Remark 1.61. As an application we obtain a proof of the fundamental theorem
of algebra (already proven in the exercises using the maximum principle).
Let p(z) = anz

n + · · · + a0 be a polynomial of degree n. Applying Rouché’s
theorem to f(z) = anz

n, g(z) = an−1z
n−1 + · · ·+ a0 and γ a sufficiently large

circle we see that p has exactly n zeros (counted with multiplicity).

The Riemann sphere

Meromorphic functions take values in C∗ = C∪ {∞}. Now we introduce the
structure of a one-dimensional complex manifold (or Riemann surface) on
C∗ that allows us to view meromorphic functions as C∗-valued holomorphic
functions.

Definition 1.62. A Riemann surface is a set X with an associated set A,
called atlas, of injective maps ϕa : Ua → Va ⊂ C, called charts, such that the
following properties hold:
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1.
⋃
a∈A Uα = X (the charts cover X), and

2. for a, b ∈ A, ϕb(Ua ∩ Ub) ⊂ Vb is open and ϕa ◦ ϕ−1
b is holomorphic on

that set.

Remark 1.63. One usually considers certain equivalence classes of atlasses
that are called complex structures. We will not go into that in the moment.

Examples 1.64. 1. Every open set Ω ⊂ C is a Riemann surface with atlas
A = {id : Ω→ Ω}.

2. The set C∗ is a Riemann surface, called the Riemann sphere. An atlas
is A = {ϕ0, ϕ1} with ϕ0 = id : C→ C and ϕ1 : C∗ \ {0} → C, z 7→ 1

z
.

Definition 1.65. Let X1, X2 be Riemann surfaces. A function f : X1 → X2

is called holomorphic if for all charts ϕi : Ui → Vi on Xi, i = 1, 2 the set
ϕ1(f−1(U2)∩U1) is open and the function ϕ2 ◦f ◦ϕ−1

1 is holomorphic on that
set.

Example 1.66. For functions Ω → C with Ω ⊂ C open, this coincides with
the already established notion of holomorphicity.

Möbius transforms

Definition 1.67. Let

(
a b
c d

)
be an invertible complex matrix. The cor-

responding Möbius transform is the map ϕ : C∗ → C∗ given by

z 7→
{

az+b
cz+d

, if z 6=∞,
a
c
, if z =∞

with the usual convention that z
0

=∞ if z 6= 0 (0
0

does not occur).

Lemma 1.68. Let A =

(
a b
c d

)
and Ã =

(
ã b̃

c̃ d̃

)
be invertible and ϕ, ϕ̃

the respective corresponding Möbius transforms. Then ϕ ◦ ϕ̃ is the Möbius
transform corresponding to the matrix AÃ.

Proof.

a ãz+b̃
c̃z+d̃

+ b

c ãz+b̃
c̃z+d

+ d
=
a(ãz + b̃) + b(c̃z + d̃)

c(ãz + b̃) + d(c̃z + d̃)
=

(aã+ bc̃)z + (ab̃+ bd̃)

(cã+ dc̃)z + (cb̃+ dd̃)
.

It remains to treat the special cases z =∞ and ϕ̃(z) =∞. This is left as an
exercise to the reader.
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Corollary 1.69. Every Möbius transform is invertible and the inverse is
again a Möbius transform.

Lemma 1.70. Every Möbius transform is a holomorphic map C∗ → C∗.

This can be checked directly from the definitions (exercise).

Theorem 1.71. The biholomorphic maps C∗ → C∗ are exactly the Möbius
transforms.

To prove this we need the following lemma.

Lemma 1.72. Möbius transforms act transitively on C∗. That is, for every
z0, w0 ∈ C∗ there exists a Möbius transform ϕ such that ϕ(z0) = w0.

Proof. If z0 =∞, w0 6=∞ choose ϕ(z) = 1
z

+ w0. If z0 6=∞, w0 6=∞ choose
ϕ(z) = z − z0 + w0. If z0 6=∞, w0 =∞ choose ϕ(z) = 1

z−z0 . If z0 = w0 =∞
choose ϕ = id.

Proof of Theorem 1.71. We already know that Möbius transforms are bi-
holomorphic. Let ψ : C∗ → C∗ be a biholomorphic map and ϕ a Möbius
transform with ϕ(ψ(∞)) = ∞ (exists by previous lemma). Then ϕ ◦ ψ is a
biholomorphic map C∗ → C∗ and the restriction ϕ ◦ ψ �C is a biholomorphic
map C → C. By Theorem 1.27 we conclude that ϕ ◦ ψ is an affine linear
map (in particular, a Möbius transform). Thus also ψ = ϕ−1 ◦ (ϕ ◦ ψ) is a
Möbius transform.

End of lecture 10. May 23, 2016
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