Seminar zur Vorlesung über Periodenbereiche

Blatt 13, Vorträge am 30.11.2006

Aufgabe 31

Veranschauliche die Aussage des Langlands-Lemmas im Fall der Gruppe GL_3 graphisch und vollziehe den Beweis in diesem Fall nach.

Aufgabe 32

Sei $n \geq 1$, $k = \mathbb{F}_q$ und \overline{k} ein algebraischer Abschluß von k. Bezeichne mit W die Weylgruppe der GL_n , mit \mathcal{F} die Varietät der vollständigen Flaggen in k^n und mit F_0 die Standardflagge. Sei Frob : $\mathcal{F} \longrightarrow \mathcal{F}$ der Frobenius-Morphismus.

Zu zwei Elementen $F_1, F_2 \in \mathcal{F}(\overline{k})$ definieren wir die relative Position

$$\operatorname{inv}(F_1, F_2) \in W$$

als dasjenige Element $w \in W$, so dass für $g_1, g_2 \in GL_n(\overline{k})$ mit $F_1 = g_1F_0$, $F_2 = g_2F_0$ gilt: $g_1^{-1}g_2 \in BwB$.

Die Deligne-Lusztig-Varietät zu $w \in W$ ist die lokal abgeschlossene Untervarietät $X(w) \subseteq \mathcal{F}$ mit

$$X(w)(\overline{k}) = \{F \in \mathcal{F}(\overline{k}); \ \operatorname{inv}(F, \operatorname{Frob}(F)) = w\}.$$

Zeige, dass X(w) glatt und rein von Dimension $\ell(w)$ ist. (Siehe [DL], Def. 1.4 und die nachfolgenden Bemerkungen.) Ist X(w) zusammenhängend?

Aufgabe 33

Wir benutzen die Bezeichnungen der vorherigen Aufgabe. Sei nun w der n-Zykel $(1, \ldots, n)$. Zeige, dass eine Flagge $F = (0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n = \overline{k}^n)$ genau dann in $X(w)(\overline{k})$ liegt, wenn

$$F_i = F_1 \oplus \operatorname{Frob}(F_1) \cdots \oplus \operatorname{Frob}^{i-1}(F_1)$$
 für alle $i = 2, \dots, n$.

Zeige, dass in diesem Falle X(w) isomorph ist zum Drinfeld-Raum Ω^n . (Vergleiche auch [DL] 2.2.)

Aufgabe 34

Zeige, dass für die Anzahl $\varphi(q, r, n)$ der \mathbb{F}_{q^r} -wertigen Punkte von Ω^n gilt:

$$\varphi(q,r,n) = \prod_{i=1}^{n-1} (q^r - q^i).$$

(Siehe [DL] Prop. 2.3.)

Literatur

[DL] P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. 103 (1976), 103–161.