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The goal of this ARGOS is to study the works [RC24a] and [ABLB+25] on analytic de Rham
stacks.

1 Introduction

The de Rham stack for algebraic varieties over a field K of characteristic 0 was introduced by
Simpson in [Sim96]. Given an algebraic variety X, its de Rham stack XdR,alg is described as the
functor XdR,alg : AlgK → Sets sending a K-algebra A to X(Ared) where Ared = A/Nil(A) is the
reduction of A. The formation of X 7→ XdR,alg is a geometrization of the de Rham cohomology in
the sense that the coherent cohomology of XdR,alg is naturally equivalent to the sheaf cohomology
of the de Rham complex, more generally, the category D(XdR,alg) of quasi-coherent sheaves on the
algebraic de Rham stack of X is naturally equivalent to the category of algebraic D-modules on
X. The de Rham stack of algebraic varieties, and its natural extension to other geometric gadgets
such as algebraic stacks, has been a fundamental object in geometric representation theory, eg. for
a reformulation of the Beilinson-Bernstein localization [BB81], and for the geometric Langlands
program [GR14, GR24].

In recent years, an analytic analogue of Simpson’s de Rham stack has been introduced in analytic
geometry, the so called analytic de Rham stack [RC24a], [Sch24b]. In p-adic geometry, this object
geometrizes the theory of D-cap modules of Ardakov and Wadsley [AW19], while in the complex
or real case the analytic de Rham stack agrees with the Betti stack whose theory of quasi-coherent
sheaves is just complex or real valued sheaves. The analytic de Rham stack has a similar modular
definition as its algebraic counterpart; given X a rigid variety over Qp its analytic de Rham stack
XdR is the (sheafification for the !-topology of the) functor XdR : RingbQp

→ Set from the category

of bounded Qp-algebras to sets mapping A to X(A†−red), where A†−red = A/Nil†(A) is the dagger
reduction of A, and Nil†(A) is the dagger nil-radical of A. Here we use the notion of bounded Qp-
algebras from [RC24a]; this notion captures the idea that all elements of A have uniformly bounded
norm. Heuristically, Nil†(A) are the elements a ∈ A of spectral norm 0.

The theory of the analytic de Rham stack satisfies very strong descent properties – namely,
arc-descent – and hence extends from rigid spaces to perfectoid spaces and even arc-stacks. This
allows one to make sense of de Rham stacks of diamonds, Fargues-Fontaine curves, Div1, BunG,
etc. This level of generality provides a realization of the theory of Berkovich motives [Sch24a],
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which can then be applied to construct a concrete stacky realization of the geometrization of the
motivic local Langlands correspondence of [Sch25] with (locally constant) Qp-coefficients. With this
motivation in mind, the work [ABLB+25] extends the theory of analytic de Rham stacks to the so
called qfd arc-stacks, and studies in detail the de Rham stack of (the Fargues-Fontaine stack of)
Div1, relating its category of quasi-coherent sheaves with the so called p-adic differential equations
or (φ, ∂)-modules over the Robba ring, eg. as in [Ked04].

More precisely, given X an arc-stack over Fp, consider its relative Fargues-Fontaine curve YX :=
X ×Spd(Fp) Spd(Qp) and FFX = YX/φ

Z
X . Then FFX → Spd(Qp) is an arc-stack over Qp. We define

the Hyodo-Kato stack of X, denoted as XHK, to be the de Rham stack

XHK := (FFX)dR

over Qp. In the case of X = Spd(Qp), one has that Div1 = X/φZ , and (Spd(Qp))
HK = (Div1×Spd(Fp)

Spd(Qp))
dR is what we meant by the de Rham stack of Div1. The cohomological properties of

the stacks XHK are also studied in [ABLB+25], establishing for example Poincaré duality. The
name of the stacks XHK come from the fact that they realize geometrically Hyodo-Kato and rigid
cohomology, eg. as in [BGV24] or [CN25]; the precise formulation of this fact will be studied in
future works.

The definition of de Rham stacks for general arc-stacks involves a new framework in p-adic
geometry called Gelfand Stacks. The category of Gelfand Stacks is a more manageable version
of the category of analytic stacks, and is constructed from a full subcategory of bounded rings,
called Gelfand rings, which are heuristically bounded rings whose completions are Banach algebras.
For technical reasons – and because this is sufficient for our applications – we also restrict to
Berkovich geometry rather than Huber’s adic geometry. This replaces a rigid space X with its
Huber’s compactification X, so that the analytic de Rham stack XdR coincides with the de Rham
stack (X†)dR of any overconvergent structure X† on X. This is actually desirable, as only the latter
has reasonable cohomology. Moreover, the choice of working in Berkovich geometry instead of adic
geometry is harmless for most of the applications of the theory; for instance, all the stacks appearing
in the geometrization of the Langlands program are partially proper.

Prerequisites: Familiarity with condensed mathematics is assumed, eg. as in [CS19]. Knowl-
edge of analytic stacks is useful but not necessary; there will be preliminary talks on this topic.
Many main ideas and definitions of the seminar can be explained and stated without an explicit
reference to higher category theory, nonetheless, the foundations and techniques of the subject rely
heavily on it. The participant is also expected to have some familiarity with the arc, v and proétale
topologies on Banach and perfectoid rings [Sch22, Sch24a].

Other useful references: [And21], [Man22], [HM24], [Sch23], [CS22], [CS20], [CS19], [RC24b].

2 Distribution of the talks

Talk 1 (October 23, 12:15–14, Room 0.006, Endenicher Allee 60). Intro-
ductory talk.

Overview talk and distributions of talks. Please attend this meeting if you want to give a talk.
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Talk 2. Recollections on Analytic Stacks

Introductory talk on the theory of analytic stacks. Recall the definition of the category of analytic
rings, the quasi-coherent six functor formalism on analytic rings, the !-topology and the category
of analytic stacks. Reference for these are [CS24], [RC24b, Section 6] or [ABLB+25, Section 4.2].
Recall how algebraic stacks can be seen as analytic stacks ([RC24b, Section 6.4] and [ABLB+25,
Lemma 3.2.1]), deduce the Betti realization of condensed anima as analytic stacks ([ABLB+25,
Section 3.2], [RC24b, Section 6.5] or [Sch24b, Chapter II.1]) and describe its category of quasi-
coherent sheaves (eg. after [HM24]). Finally, recall how adic spaces can be seen as analytic stacks
([And21]).

Talk 3. Recollections in Serre and Cartier duality

This is a continuation of the previous talk in a more example-based presentation. Briefly recall
the definition of suave and prim maps in six functor formalisms (but do not expend much time
on that). Describe the six functors for the map f : AnSpec(Z[T ]□) → AnSpec(Z□) and prove that
AnSpec(Z[T ]□) is cohomologically smooth ([CS19, Lecture VIII] and [RC24b, Proposition 7.1.11]).
After base change to Zp, deduce that Spa(Qp⟨T ⟩,Zp⟨T ⟩) → Spa(Qp) is cohomologically smooth for
the solid six functor formalism.

Then, following [RC24a, Section 3.6] show that morphisms of smooth rigid spaces are cohomolog-
ically smooth for the solid six functor formalism (reduce to local complete intersections and affinoid
discs). Finally, sketch the proof of the Cartier duality between the algebraic affine line Galg

a,Q =

Spec(Q[T ]) and its formal completion at zero Ĝa,Q, and between the analytic affine line Gan
a,Qp

and

its overconvergent neighbourhood at zero G†
a,Qp

= AnSpec(Qp⟨T ⟩≤0) where Qp⟨T ⟩≤0 = lim−→n
Qp⟨ T

pn
⟩

(eg. [Bha22, Proposition 2.2.13] and [RC24a, Section 4]). Using this, prove that BĜa,Q → Spec(Q)

is suave and prim, same for BG†
a,Qp

→ Spa(Qp).

Talk 4. Gelfand rings

Introduce the category of bounded rings over Qp as in [RC24a] and [ABLB+25, Section 2]; focus
on solid rings with the induced analytic ring structure. Given a bounded ring A, define the solid
subspaces A≤r of elements of norm ≤ r in A, as well as the dagger-nilradical Nil†(A), the dagger-
reduction A†−red and the uniform completion Au. State in particular [ABLB+25, Proposition 2.2.20,
2.3.6 and Corollary 2.3.7].

Then, following [ABLB+25, Section 3], introduce the category of Gelfand rings, define the
Berkovich spectrum of a Gelfand Qp-algebra and construct the map GSpec(A) → M(A)Betti in
the finite dimensional case. More precisely, the speaker should discuss [ABLB+25, Propositions
3.1.9, 3.1.16, 3.1.19 and 3.2.10]. We suggest the speaker to keep the discussion non-technical, only
providing the key steps in the proofs.

Finally, state (but not prove) the Fredholm property of Gelfand rings of [ABLB+25, Proposition
3.3.5]. Here and elsewhere, restrict to static rings whenever this simplifies the discussion.

Talk 5. Arc- and Gelfand Stacks

The goal of this talk is to construct the categories of arc and Gelfand stacks, and the perfec-
toidization functor (−)⋄ : GelfStk → ArcStkQp . More specifically, following [ABLB+25, Section 4.1]
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introduce the category of (light) arc-stacks. Give the example of the realization of condensed anima
in arc-stacks of [ABLB+25, Example 4.1.9].

Define the category of Gelfand stacks following [ABLB+25, Section 4.2], and construct the
perfectoidization functor of [ABLB+25, Lemma 4.5.1] as a left adjoint of a morphism of topoi.

Prove that (−)♢ is itself a right adjoint of a functor (̂−) : ArcStkQp → GelfStk sending an affinoid
perfectoid Marc(A) to GSpec(A) ([ABLB+25, Proposition 4.5.5]).

Finally, construct the Fargues-Fontaine stack functor Y : ArcStkFp → GelfStk ([ABLB+25, Corol-
lary 4.4.10]). Mention the main ingredients for its hyperdescent, and relate with the work of
[AM24, ALBM24].

In this talk the speaker is invited to black-box the technical descendability results of perfectoid
and Gelfand rings on Sections 4.4-4.6 of [ABLB+25].

Talk 6. Analytic de Rham stacks I: derived Berkovich spaces

Introduce the category of derived Berkovich spaces as in [ABLB+25, Section 4.3], proving in partic-
ular that derived Berkovich spaces embed fully faithfully in Gelfand stacks [ABLB+25, Proposition
4.3.3]. Define rigid-étale and smooth maps of derived Berkovich spaces [ABLB+25, Definition 4.3.4],
and the notion of †-rigid space [ABLB+25, Definition 4.3.6].

Then define the big de Rham stack (−)DR as a right adjoint of the perfectoidization functor
[ABLB+25, Definition 4.5.3]. Prove that (−)DR is a fully faithful embedding of arc-stacks into
Gelfand stacks. Proceed to study the big de Rham stack of derived Berkovich spaces in [ABLB+25,
Section 4.7]. More precisely, introduce the notion of †-formally étale and smooth of [ABLB+25,
Definition 4.7.2], give the examples [ABLB+25, Example 4.7.6], and give a sketch of the proofs of
[ABLB+25, Propositions 4.7.11 and 4.7.13] describing the basic structure of the de Rham stack of a
derived Berkovich space. Finally, finish with a detailed explanation of the example of the de Rham
stack of the perfectoid multiplicative group of [ABLB+25, Example 4.7.16].

Similar as in previous talks, the speaker is invited to assume the necessary descendability results
of Sections 4.4-4.6 of [ABLB+25].

Talk 7. Analytic de Rham stacks II: arc-descent

We continue with the study of the analytic de Rham stack. Discuss arc-descent of the de Rham
stack. Recall the construction of the functor (−) : CondAni → ArcStkQp of [ABLB+25, Example

4.1.9]. Introduce the notion of quasi-finite dimensional morphism of arc-stacks [ABLB+25, Def-
inition 4.1.11], and that of Gelfand rings [ABLB+25, Definition 4.2.14]. From this, redefine the
perfectoidization (−)⋄ and de Rham stack (−)dR for qfd arc- and Gelfand stacks (here only a defi-
nition will suffice).

In the rest of the talk, justify the set up of qfd stacks in order to prove arc-descent of the de Rham
stack. For this, introduce the categories of nilperfectoid and (strictly) totally disconnected Gelfand
rings of [ABLB+25, Definition 4.6.1]. The speaker should mention (without proof) the descendable
properties of Gelfand rings of [ABLB+25, Proposition 4.6.4], in particular state that a qfd Gelfand
ring admits a !-cover by a strictly totally disconnected nilperfectoid ring. Mention [ABLB+25,
Example 4.5.9], the counter example of a compact Hausdorff space X such that XBetti → (X)DR is
not an isomorphism, and hence that the big de Rham stack does not satisfy arc-descent. On the
other hand, give a sketch of the arc-descent of the de Rham stack in the qfd setting of [ABLB+25,
Theorem 4.8.6]. Finish by mentioning that the de Rham stack actually satisfies arc-hyperdescent
in the qfd setting ([ABLB+25, Section 5.6]), but do not give a proof.
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Talk 8. Six functors on analytic de Rham stacks I: proper and smooth
maps

After having discussed some generalities on the analytic de Rham stack we will study more carefully
its theory of six functors. From now on we shall assume that all the arc and Gelfand stacks are qfd,
in particular, the de Rham stack satisfies arc-descent.

Define morphisms locally of quasi-finite dimension (lqfd) [ABLB+25, Definition 5.1.3], and prove
[ABLB+25, Proposition 5.1.4]. Deduce that all morphisms between rigid spaces are !-able for the
de Rham stack. Define étale and smooth morphisms of arc-stacks as in [ABLB+25, Definition
5.1.6], and prove that étale (resp. smooth) morphisms of arc-stacks are cohomologically étale (resp.
cohomologically smooth). Explain the theory of first Chern classes of [ABLB+25, Remark 5.1.10]
and use [Zav21] to prove Poincaré duality for the six functor formalism of analytic D-modules for
rigid spaces.

Talk 9. Six functors on analytic de Rham stacks II: more properties

In this talk we will prove the comparison between the cohomology of the analytic de Rham stack
and the sheaf cohomology of the de Rham complex in [ABLB+25, Section 5.2]. The speaker is
welcome to present the comparison of [ABLB+25, Proposition 5.2.1] in detail, and give a sketch of
the comparison via the filtered de Rham stack of [ABLB+25, Remark 5.2.3].

Next, prove that the de Rham stack of the perfectoid unit disc is cohomologically smooth
following [ABLB+25, Section 5.7], using as a black box the technical lemma in abstract six functors
of Section 5.3. Finally, explain [ABLB+25, Proposition 5.4.10] concerning vector bundles on de
Rham stacks on derived Berkovich spaces, using [ABLB+25, Proposition 5.4.9] as a black box.

Talk 10: de Rham stacks of Fargues-Fontaine curves

Introduce the Hyodo-Kato stacks of [ABLB+25, Section 6]. Prove [ABLB+25, Proposition 6.1.12]
(focus on the case X = Qp and W any algebraic field extension of Qp). Then, present [ABLB+25,
Lemma 6.2.1] describing different examples of Hyodo-Kato stacks. Also discuss the computations of
[ABLB+25, Lemmas 6.2.2, 6.2.3, 6.2.5 and 6.2.9] which provide several examples of computations in
Hyodo-Kato stacks, particularly the construction of a theory of Chern classes for Hyodo-Kato coho-
mology. Finally, state (but not prove) Poincaré duality for the Hyodo-Kato cohomology [ABLB+25,
Theorem 6.3.1].

Talk 11. The p-adic monodromy theorem I: construction

First, give the statement of the p-adic monodromy theorem, and its interpretation using de Rham
stacks of Fargues-Fontaine curves. Start by defining Robba rings following [ABLB+25, Section
7.2]. Then state the classical p-adic monodromy [Ked04, Theorem 1.1] (also known as Crew’s
conjecture). Next, follow [ABLB+25, Section 7.1] and sketch the construction of the main stacks
involved in the geometric statement of the p-adic monodromy [ABLB+25, Theorem 7.1.1]. Explain
the proof strategy of [ABLB+25, Remark 7.1.4]. Coming back to [ABLB+25, Section 7.2], state
(and not prove) [ABLB+25, Proposition 7.2.8] relating φ-modules over the Robba ring and vector
bundles on Qcyc,HK

p , then deduce that the original formulation of Crew’s conjecture is implied by the
geometric formulation of [ABLB+25, Theorem 7.1.1]. Finally, discuss in detail the construction of
the p-adic monodromy map of [ABLB+25, Construction 7.3.6] including all the previous discussion
in Section 7.3 (but not [ABLB+25, Lemma 7.3.7]).

5



Talk 12. The p-adic monodromy theorem II: proof of the theorem

Finally, we give a proof of the p-adic monodromy theorem. First, for completeness of the previous
talk, prove [ABLB+25, Lemma 7.3.7] computing the de Rham cohomology of the Tate curve; this
produces another way to construct the extension class defining the p-adic monodromy map. Then
prove fully faithfulness following [ABLB+25, Section 7.4] (here the speaker is welcome to skip
proofs and just mention the technical reductions of [ABLB+25, Lemmas 7.4.2, 7.4.3 and 7.4.4]).
Explain in detail the proof of [ABLB+25, Proposition 7.4.6]; assume the technical computation of
Lemma 7.4.7, but mention that it is the only place where one needs to solve an explicit differential
equation. Next, explain the proof of Tsuzuki’s theorem in detail, this amounts to prove [ABLB+25,
Proposition 7.5.1] over Q̆p, and then deduce the p-adic monodromy theorem of [ABLB+25, Theorem
7.5.3].
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