ARITHMETISCHE GEOMETRIE OBERSEMINAR
BoNN, WINTERSEMESTER 2012
PROGRAMMVORSCHLAG: M. RAPOPORT
TopriCc: FORMAL MODULI SPACES IN EQUAL CHARACTERISTIC

The aim of the seminar is to understand the analogue in the equal characteristic case
of the theory developed in the monograph [14]. More precisely, we want to understand
the analogues of p-divisible groups, of Dieudonné theory, of the formal moduli spaces of
p-divisible groups, and of period spaces.

0. Talk: Introduction (M. Rapoport)
Presentation of the subject of the seminar. Distribution of talks.

1. Talk: Definition of z-divisible modules

Explain the different roles of z and ¢, cf. [6], 1.2. Explain finite strict F,-modules
and their relation to finite F,-shtukas, cf. [12], §1; comp. also [1] and [2], §2 (where,
however, the strictness refers to the structure of O-module!). Give Examples, e.g. [6],
3.4, and [9]. Explain notion of z-divisible groups (alias divisible Anderson modules), cf.
[12], Def. 2.3.3

2. Talk: Local shtukas

Give definitions, cf. [3, 12, 6] (also of effective, resp. minuscule local shtukas). Explain
the equivalence between the stacks of z-divisible groups and of certain local shtukas, cf.
[7], 86, [12], 2.4.

3. Talk: Dieudonné-Manin Classification of isocrystals over an algebraically
closed field

Explain the notion of isocrystal in this context (cf. [6], 3.5), and give the proof of
[13], Thm. 2.4.5.

4. Talk: The Grothendieck-Messing theorem for minuscule local shtukas

Explain this theorem in its simplest version, when I? = (0), cf. [7], §11. Give an
overview of the truly crystalline version of [3], §§5, 6.

5. Talk: Local G-shtukas

Explain the notion in [4], §3 (leave out the proof of Soergel’s theorem there). Make
the connection to the previous talks, cf. [4], §4. Give the example of the Picard case of
signature (r, s).

6. Talk: RZ-spaces and affine Deligne-Lusztig varieties
Explain the contents of [4], §6.
7. Talk: Filtered isocrystals

Explain the notion of Hodge-Pink structure, cf. [6], 3.7, [5], §2. Explain the mysterious
functor construction, cf. [6], 5.5.

8. Talk: Period spaces

Explain some of the contents of [5], §3, comp. [6], §6, including the jet spaces occurring
naturally in the general case; also explain why they don’t appear in the minuscule case.
For the period morphism outside the minuscule case, the analogy with the unequal
characteristic case breaks down partially, compare [10], below 2.5, and [11].
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